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Problem P: Plus one

You have just realized that the average of all the numbers in the world is too small. Therefore, you
decided to increase some of them inconspicuously.

Problem specification

You are given several integers. Increment each of them by one.

Input specification

The input consists of several lines, each line contains single integer x.
The absolute value of each integer lies between 0 and 1 000, inclusive.

Easy subproblem P1: There are exactly 50 lines of input.
Hard subproblem P2: There are exactly 1 000 lines of input.

Output specification

For each integer x in the input, output a single line with the integer x+ 1.
Use precisely the same format that was used for x.

Example

input

1
46
41

output

2
47
42

Note: This example has only 3 lines of input.
The input files p1.in and p2.in contain 50 and 1 000 lines, respectively.

Also note: Please do NOT submit any programs.
For each subproblem, just produce and submit a correct output file.
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Task authors

Problemsetter: Jano Hozza
Task preparation: Jano Hozza, Peter ‘Bob’ Fulla

Solution

This task was easy but it had a malicious twist – after all, practice problems have to prepare you for
the villainy on the real contest :)

Did you fall into our trap and write a program before actually looking at the input files? Or did the
phrase “Use precisely the same format that was used for x.” ring a warning bell?

Either way, once you found out what is really going on, there were many ways of dealing with the
problem. Possibly the simplest way is to write a semi-interactive program: if the input is an integer, it
increments it automatically, otherwise it prompts the user for the correct output. As there were only 20
special numbers in each input, this approach was really feasible.

Solving the hard subproblem probably required using Google and a language dictionary. Hopefully
you can forgive us if some of the test cases in the hard input seemed ambiguous to you. We did our best
to help you out – the grader was verbose and always reported the first mistake you made. We were also
helpful if you contacted us with a clarification request. And getting a few Wrong answers in the practice
session is actually a good thing – at least you saw how they look like! :)

The table below lists the tricky inputs and outputs included in P2, ordered by difficulty. The first
column is the number of Wrong answers. There were a few more regular English numbers (as words)
that are not included in the table – almost all submissions got them right.

WA input output description
146 evil matching fair coin toss IPSC 2012 problem names
104 abcdefghijklmnopqrstuxyzwv abcdefghijklmnopqrstuxzvwy permutations in lexicographic order
80 51x7y-n1n3 53v3n7y “leet speak”
53 dreiundsiebzig vierundsiebzig German numbers
53 osemdesiatdevat devatdesiat Slovak numbers (without diacritics)
47 di-di-di-di-dah dah-dah-dah-dah-dit di-di-di-di-dit dah-dah-dah-dah-dah phonetic Morse code
38 gold mercury elements by proton number
30 minus seven minus six
29 saturn uranus planets
28 iiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii unary (output has one more i)
28 ekans arbok pokémon (by numeric id, also evolution)
21 one-one-zero-one-one-one one-one-one-zero-zero-zero binary digits
18 lxxviii lxxix Roman numerals
17 two three
15 neves-ytfif thgie-ytfif English backwards
9 soixante-quatorze soixante-quinze French numbers
5 treinta y cuatro treinta y cinco Spanish numbers

Some random notes:

• For some strange reason, the most common mistake (43×!) was misspelling vierundsiebzig as
vierundsiebenzig (even though the input shows the correct spelling for tens in German).

Update: the “strange reason” turned out to be a bug in Google Translate! The query http://
translate.google.com/#en/de/seventy-four returns the incorrect string.

This is the second time we are aware of that Google Translate caused problems during IPSC. The
first case was http://translate.google.com/#en/de/1%202%204%203%205: some teams who used
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Translate to read the problem statement got to see an incorrect input file. And if memory serves
us well, this was in the task Antisort, where sorting the example output made the most damage it
could.

• For many semi-automated programs (25×) the input 51x7y-n1n3 proved to be tricky: they recog-
nized it as an integer and printed the output 52.

The output for this input was hard to get right by hand – many solvers missed that you already
know how to write all letters of seventy, except for v (which remains unchanged), and instead of
the correct answer submitted s3v3n7y (5×) or 53v3nty (3×).

Some of the even weirder submissions include 1539365428 (4×! what is this?) and 51x7y-n1n3+1
(3×).

• In the phonetic Morse code, many solvers missed that (also in the input) trailing dots are transcribed
as dit, but all the others are di.

• The string minus seven was the first non-number in P2, and also the first string with a space. It
caused your programs to misbehave in various ways: we got 2 submissions that processed minus and
seven separately, 7 submissions that were just missing everything from this point on, 5 submissions
containing -6 (not the correct format), 4 submissions containing -622 (these just skipped the test
case), and a few other submissions that were broken in other ways.

But, most notably, there were four submissions with the string minus eight. That’s four points for
the evil problemsetters right there :)

• Out of the 17 submissions that failed on the input two, 16 contained the output two! We managed
to hide it well, and that’s another 16 points for us :)
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Problem Q: Quite the cheater!

Your physics lab report is due tomorrow. However, you had no time to do the required experiments,
as you spent all your time practicing for the IPSC. Therefore you decided to write a fake report quickly.
Here is how to get a good grade for your lab report:

• It has to contain a lot of measurements.

• You already know the correct value you were supposed to measure. The mean of all “measured”
values in your report has to be equal to that value.

• The values must look sufficiently random to avoid suspicion that you made them all up. (Yeah,
right.) More formally, they must have a sufficient variance.

Problem specification

You are given two integers: the desired mean µ and the desired variance v.
Pick a number of measurements n and the values of those measurements a1, . . . , an such that the

mean of those values is exactly µ and their variance is (easy subproblem: at least v / hard subproblem:
exactly v). Formally, your values must satisfy the following conditions:

• 10 ≤ n ≤ 1000

• Each ai is an integer between −109 and 109, inclusive.

• The value µ is exactly the mean: µ = (a1 + · · ·+ an)/n.

• The variance of your values1 is computed as follows: (1/n) ·
(

(a1 − µ)2 + · · ·+ (an − µ)2
)

.

• In the easy subproblem Q1: the variance of your values must be at least v.

• In the hard subproblem Q2: the variance of your values must be exactly v.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case contains a single line with two integers: µ and v.
You may assume that t ≤ 100, |µ| ≤ 106, and 0 ≤ v ≤ 109.

Output specification

For each test case, output two lines. The first line should contain the number of values n, the second
line a space-separated list of values a1, . . . , an. Any valid solution will be accepted.

Example

input

1

47 2080

output

11
34 -7 102 117 16 8 0 130 36 34 47

This would be a correct solution to both sub-
problems. I.e., this sequence of 11 values has mean
exactly 47 and variance exactly 2080.

1If you are a statistics buff, note that we are not using the unbiased sample variance formula (the one with 1/(n − 1)
instead of 1/n), as in our case the mean is known a priori. If the previous sentence makes no sense, just ignore it and use
the formula in the problem statement.
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Task authors

Problemsetter: Michal ‘mišof’ Forišek
Task preparation: Michal ‘mišof’ Forišek, Lukáš ‘lukasP’ Poláček

Solution

This was an easy task. All the math in the statement makes it look scary, but once you dealt with
your fear and actually read it, you probably quickly realized that there was not much to solve here.

Easy subproblem

The mean is easy. You want a sequence with mean 47? Here’s one: 47, 47, 47, 47, 47, 47.
Now what about variance? This sequence clearly has variance zero – it does not vary at all. How

would you make a sequence that varies, and still has the same mean? The simplest way of doing so:
increase some values, and decrease other ones by the same amount. Here is a sequence with variance 100:
37, 57, 37, 57, 37, 57.

And just like that, we can solve the easy subproblem. For a given µ and v, just pick n = 10 and
output five values µ− 106 and five values µ+ 106. The mean is clearly µ, and the variance is 1012, which
is more than any v given in the input.

Hard subproblem

Now for the hard subproblem. Here we cannot just take values that are wildly greater and smaller
than the mean, we have to get the variance just right.

The first simplification will be to ignore µ. We will just solve the task for µ = 0. A solution for a
different value µ can then easily be constructed by adding µ to all elements of the original solution.

Second, the definition of variance includes division by n. To avoid dealing with fractions, we can
multiply both sides by n, obtaining nv = (a1−µ)2+ · · ·+ (an−µ)2. And as we just decided to set µ = 0,
this further simplifies to nv = a21 + · · ·+ a2n.

We are now looking for a sequence a1, . . . , an such that a1+ · · ·+an = 0 and a21+ · · ·+a2n = nv. There
is a lot of freedom here. One way to start is to pick some n and see whether it leads to a solution. For
now, let’s go with the largest possible n = 1000, as it gives us the most freedom in choosing the elements.
(Later on we shall see that almost any even n always works.)

Now we need to choose all the ai. We will pick the values in pairs: a2 = −a1, a4 = −a3, and so on.
That alone will make sure that the sum of all ai will be 0 at the end. Now, how to choose their actual
values? It turns out that a simple greedy approach works.

For example, suppose that you want to have a21 + · · · + a2n = 4700. What is the largest |a1| you can
take? You have to have a21 + a22 ≤ 4700, in other words, a1 ≤

√
4700/2. As we want to get as close as

possible to 4700, we pick a1 = b
√

4700/2c = 48 and a2 = −a1 = −48. And this leaves us with a smaller
problem: we need to find a3, . . . , an such that a23 + · · ·+ a2n = 4700− 2 · 482 = 92.

We can easily see that the greedy approach always works (as long as the desired value nv is even and
n is large enough). We cannot get stuck – if the desired value is still positive, we can always decrease it
by two, by taking a2k+1 = 1 and a2k+2 = −1. Actually, this greedy solution converges quite quicky, as
each step decreases the desired value to approximately the square root of the previous one. And that’s it.

Did you like the problem? For an additional challenge, try solving it (not necessarily using our greedy
approach) with n as small as possible.
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Hard subproblem: After the contest

The most popular construction used in your submissions was exactly the one presented in our solution
(which was written before the contest), including the constant choice of n = 1000: there were 28 accepted
submissions identical to the one we just described.

The second most popular choice (17 submissions) was to always choose the smallest valid n for which
the above greedy construction works.

The third place (with 14 submissions) and the fourth place (with 9) go again to the same greedy
solution, only with the choice of n = 20 and n = 100.

On the other end of the spectrum there were about 20 submissions that were pairwise distinct and
none of them used our greedy construction. Clearly, the solution presented above is far from being the
only one. What about you? If you solved this task in the “mainstream” way, it may be a good exercise to
try coming up with at least one other approach that works. What if you, for example, started by trying
to place one value as far away from the mean as possible?
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Problem R: Rearranged alphabet

The string abcabac has a peculiar property: each permutation of a, b, and c occurs in it as a subse-
quence:

abcabac
-------
a b c
a c b
b a c
bca
cab
c ba

Your task is to find such a string for the entire English alphabet. That is, a string such that each of
the 26! permutations of a through z occurs in it as a subsequence.

Input specification

There is no input.

Output specification

Your output must contain a single line with a string of lowercase English letters.
For the easy subproblem R1 we will accept any valid string that has at most 660 letters.
For the hard subproblem R2 we will accept any valid string that has at most 640 letters.
(There are valid answers shorter than 630 letters.)
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Task authors

Problemsetter: Michal ‘mišof’ Forišek
Task preparation: Michal ‘mišof’ Forišek, Monika Steinová

Solution

It’s trivial to find a solution with 262 letters: we can just take 26 consecutive copies of the whole
alphabet (actually, each of them can be in any order we like). Any permutation can be found in such a
string – from each alphabet we can pick one letter we need.

Unluckily, this is over the limit for the easy subproblem – but not by much: 262 = 676, and we are
supposed to get it to 660 or below. That seems like all it needs is a small tweak.

Easy subproblem

One possible tweak: Assume that we have a string that consists of 25 copies of the alphabet, each in
its usual order. This string is almost a solution! Why? Almost any permutation contains two consecutive
letters such that the first one is smaller than the second one. And in such a case, we can take both those
letters from the same copy of the alphabet. For example, when looking for the permutation kjbd..., we
can take k from the first alphabet, j from the second one, and both b and d from the third one.

There is only a single permutation that cannot be found in our shorter string: the reversed alphabet.
Luckily, this is easily fixed by appending one more a to our string.

This is the solution we get:

(abcdefghijklmnopqrstuvwxyz)25a

The length of this string: 25× 26 + 1 = 651, well within the limit for the easy subproblem.

Hard subproblem: Analysis

The hard subproblem was intended to be the hardest subproblem of this year’s practice session.
Solving this task optimally (for a general alphabet) is actually still an open problem. The limit of 640
was chosen so that there would be some known constructions that can do strictly better. Below, we show
one such construction (originally by Leonard Adleman). For an alphabet with n ≥ 3 letters it produces
a string of length n2 − 2n+ 4.

We will start by slightly generalizing the solution to the easy problem. Take any fixed alphabet and
form an infinite string S by concatenating its copies. Here is an example for the alphabet a through g
(with n = 7 letters):

S = abcdefgabcdefgabcdefgabcdefgabcdefg...

What do we already know about this string? We know that its prefix of length n(n− 1) + 1 already
contains all possible permutations of the alphabet. Now the generalization: Consider all strings of length
k that do not contain any letter twice. Let’s call them diverse strings of length k. (There are no such
strings for k > n, and k = n are precisely our permutations.) Given k, what is the shortest prefix of S
that contains each of the diverse strings of length k?

The answer is pretty easy: k(n− 1) + 1 letters are enough. For example, abcdefg contains all 1-letter,
and abcdefgabcdef contains all 2-letter diverse strings over the alphabet a through g. The proof is
essentially the same as for permutations, we leave the details as an exercise :)
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In fact, not only the prefixes of S have this property. Any substring of S of length k(n− 1) + 1 works.
(This is because each substring of S looks exactly the same, only the order of letters in the alphabet
changes.)

We can now use this observation to construct a shorter solution to our original problem. Consider the
following string (with spaces inserted for clarity):

abcdefgabcdef h gabcdef

Obviously, this string contains each diverse string of the form ??h?, where each ? is a letter from a to g.
Another similar string to consider:

abcdefgabcdefgabcde h f

This one clearly contains each diverse string of the form ???h (over the same alphabet). This is because
the first part of the string is long enough to contain each 3-letter diverse string made of the letters a
through g. (The last f is actually not necessary, but we kept it anyway – now the only difference between
this example and the previous one is that the h moved six positions to the right.)

Of course, we can take the same string abcdefgabcdefgabcdef we used in the previous two examples,
and insert multiple hs at the same time:

abcdefgabcdef h gabcde h f

This one clearly contains each diverse string of the form ??h?, and also each diverse string of the form
???h (over the same alphabet).

Hard subproblem: Construction

We can now use the above observations to come up with the following construction for a general n:
Consider the infinite string S for the first n − 1 letters of the alphabet. Take its prefix P of length

(n− 1)(n− 2) + 2. For each i between 0 and n− 1, inclusive, insert the last letter of the alphabet after
1 + i(n− 2) letters of P .

Here is the entire string (with spaces for clarity) for n = 8 and the alphabet a through h:

a h bcdefg h abcdef h gabcde h fgabcd h efgabc h defgab h cdefga h b

It should be obvious that this string contains each of the 8! possible permutations of its alphabet:
E.g., for any permutation of the form ???h???? we can use the fourth h in our string and ignore the other
hs. The string over a-g before the fourth h is long enough to contain any 3-letter diverse string, and the
same holds for the part after the chosen h and 4-letter diverse strings.

This construction starts with a string of length (n − 1)(n − 2) + 2, and then inserts n additional
characters. Thus the total length of the constructed string is n2 − 2n+ 4, as promised.

One final note: This construction gives the shortest possible solution for n ≤ 7. It is also known that
there is an even better solution already for n = 10. As stated above, the general problem of determining
the best solution is still open. Are you up for a challenge? :)
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Hard subproblem: After the contest

The best solution during the contest was given by the team grab grab gentleman. They were able
to find a string of just 622 characters with the required property. Their solution:

zyabcdefghijklmnopqrstuvwxzabcdefghijklmnopqrstuvwyxzabcdefghijklmnopqrstuvwzxyabcdefghijklmnopqrstuvzwxabcdefghijklmnopqrs
tyuzvwxabcdefghijklmnopqrstzuyvwxabcdefghijklmnopqrsztuvwxabcdefghijklmnopqyrzstuvwxabcdefghijklmnopqzrystuvwxabcdefghijklm
nopzqrstuvwxabcdefghijklmnyozpqrstuvwxabcdefghijklmnzoypqrstuvwxabcdefghijklmznopqrstuvwxabcdefghijkylzmnopqrstuvwxabcdefgh
ijkzlymnopqrstuvwxabcdefghijzklmnopqrstuvwxabcdefghyizjklmnopqrstuvwxabcdefghziyjklmnopqrstuvwxabcdefgzhijklmnopqrstuvwxabc
deyfzghijklmnopqrstuvwxabcdezfyghijklmnopqrstuvwxabcdzefghijklmnopqrstuvwxabcyzdefghijklmnopqrstuvwxabczydefghijklmnopqrstu
vwxabcz

A total of 15 correct strings has been found and submitted by the contestants. We normalized each
of them (the first letter used is changed to a, the second one to b, etc.) and converted them into two-
dimensional plots. (The y axis is the letter, the x axis is the index into the string.) This then allowed us
to see constructions that were almost, but not entirely, identical. All the different-enough construction
types are shown in the figures below:
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Problem A: Advice for Olivia
Olivia is going to work in the candy shop during the summer. However, she is afraid she’ll have to

work at the cash register. Whenever the cash register tells her to return some money to the customer,
Olivia panics, because she can’t decide which denominations to use. And if she takes too long (i.e., uses
more than p pieces), a long checkout queue of nervous people will soon form.

Problem specification

In this problem we shall consider the Euro, as this is the currency used where Olivia lives.
The cash register holds an infinite supply of each of the following denominations: 1c, 2c, 5c, 10c, 20c,

50c, 1 Euro, 2 Euro, 5 Euro, 10 Euro, 20 Euro, 50 Euro, and 100 Euro. (The “c” denotes cents. There
are 100 cents in 1 Euro.)

For the given sum s, find one way of paying s using at most p pieces of currency.

In the easy subproblem A1, p equals 106.
In the hard subproblem A2, p equals 200. (Using fewer pieces is harder!)
In both subproblems, each s will be between 0 and 100 Euro, inclusive.

Input specification

The first line of the input file contains an integer t ≤ 100 specifying the number of test cases. Each
test case is preceded by a blank line.

Each test case consists of a single line containing two space-separated integers: e and c. The sum s
for this test case is “e Euro c cents”. You may assume that 0 ≤ c ≤ 99.

Output specification

For each test case, output one line containing 13 space-separated integers n1 through n13, where each
ni represents the number of pieces of the i-th currency type in the list above. That is, n1 is the number
of 1c coins, . . . , and n13 is the number of 100 Euro banknotes Olivia should use.

The total number of pieces of currency you use (n1 + · · ·+ n13) must be less than or equal to p. Any
such output that pays exactly the desired sum s will be considered correct.

Example

input

3

10 50

0 1

18 47

output

0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 2 0 1 1 1 1 0 0 0

In the first test case, Olivia pays “10 Euro 50 cents” using a 10-Euro banknote and a 50-cent coin.
In the second test case, she pays a single cent using a 1-cent coin. In the last test case, she pays the sum
“18 Euro 47 cents” as 10 Euro + 5 Euro + 2 Euro + 1 Euro + 20 cents + 20 cents + 5 cents + 2 cents.

Note: Please do NOT submit any programs.
For each subproblem, just produce and submit a correct output file.

http://ipsc.ksp.sk/ page 13 of 52 licensed under CC BY-SA 3.0



IPSC 2013 June 08, 2013

Task authors

Problemsetter: Vlado ‘Usamec’ Boža
Task preparation: Baška Klembarová

Solution

Hopefully, we managed to trick many experienced coders into implementing an algorithm that pays
each sum using the smallest possible number of pieces of money.

This can be done in two ways: either by using dynamic programming, or by greedily always taking
the largest denomination that does not exceed the remainder of the sum. The dynamic programming
approach works for any set of denominations, the greedy algorithm does not – but luckily for Euros it
does.

But both approaches were too complicated. Our task was actually solvable in two lines of code.
In the easy subproblem, p is so large that we can pay the entire sum using 1c coins. So we can just

print 100e+ c and then 12 zeroes.
And the hard subproblem is also not that hard: the limits s ≤ 100.00 and p ≤ 200 allow us to pay all

the Euros using 1 Euro coins, and all the cents using 1c coins. So we can just print c, then 5 zeros (for
the other cent coins), then e, and then another 6 zeros (for the larger Euro coins and banknotes).

After the contest

Out of the 659 accepted submissions for the subproblem A2, almost all (608 of them!) implemented the
greedy algorithm that finds the solution with the smallest number of coins. Only 40 submissions imple-
mented the 1 Euro and 1 cent solution we described above. Almost all the remaining correct submissions
were pairwise distinct.
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Problem B: Boredom buster

Gillian is normally a very lively child. Most of the time she plays with her friends and tries to indulge
in some mischief. But today is different, today Gillian woke up with the flu so she has to stay in bed –
still and bored. To entertain her, her brother came up with the following game.

When Gillian has an integer x greater than 1, she can split it up into two positive integers y and z
such that x = y + z. After performing this operation, her brother gives her y · z hazelnuts. However, not
all pairs of y, z are valid – there are some rules Gillian must comply with. These rules differ between the
easy and hard subproblems; they are listed in the problem specification section.

Numbers that are obtained as a result of this operation can be also split up. At the beginning of the
game, Gillian starts with a single integer n. She performs a series of operations described above until she
is left with n copies of number 1. What is the maximum number of hazelnuts she can win if she chooses
her moves wisely?

Problem specification – easy subproblem B1

For any x > 1 there is exactly one valid way of splitting:

• if x is divisible by 3, then y = x/3 and z = 2x/3;

• if x is divisible by 2 (but not by 3), then y = z = x/2;

• otherwise, y = 1 and z = x− 1.

Problem specification – hard subproblem B2

Gillian can pick any integer k satisfying 1 < k ≤ x and split up number x into y = bx/kc and
z = x− bx/kc.

Input specification

The first line of the input file contains an integer t ≤ 1000 specifying the number of test cases. Each
test case is preceded by a blank line.

Each test case contains a single line with Gillian’s initial integer n > 1. You may assume that n ≤ 106

in the easy subproblem B1, and n ≤ 109 in the hard subproblem B2.

Output specification

For each test case, output a single line with the maximum number of hazelnuts.

Example

input

1

5

output

10

This answer happens to be correct for both subp-
roblems.
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Task preparation: Peter ‘Bob’ Fulla

Solution

Solving the easy subproblem was a really straightforward task: One just needs to follow the determi-
nistic splitting rule described in the problem statement.

We can store the integers Gillian currently has (other than 1) in almost any data structure (such as
a queue or a stack). While the data structure is nonempty, we remove an integer x from it and split
x according to the instructions. After that we insert the outcomes back into the data structure, and
increment the number of hazelnuts by the appropriate amount.

Such an approach does not work for the hard subproblem – the initial integer n is too large. Moreover,
there are too many valid ways of splitting an integer and we have to choose the best one carefully.

Or do we?
Actually, any sequence of operations yields the same result:

(
n
2

)
. And this is true for arbitrary splitting

rules – those in the problem statement were just there to confuse you! Even if we were allowed to split
any x > 1 into any y, z > 0 such that x = y + z, we would always collect the same total number of
hazelnuts.

One way to prove it is by induction. However, a combinatorial proof is more interesting, as it can
help us intuitively understand why the claim is true. Instead of an integer x imagine a complete graph
on x vertices (Kx). When we split it up into Ky and Kz (x = y + z), we lose all the edges between the
separated vertices. That is, we lose exactly y · z edges, and we get a hazelnut for each of them. At the
end, we have n isolated vertices, so during the splitting we must have gotten rid of all the edges, and we
now have a hazelnut for each of the

(
n
2

)
edges of the original graph.
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Problem C: Code Inception

In each subproblem of this task you are given a piece of code. Ultimately, the code produces (somehow,
somewhen) a single readable English word.

Problem specification

Your only goal: recover the word.
And remember: you may need to go deeper.

Input specification

For each subproblem, you are given two files, each containing the same program, written in a different
language. (One is in C++, the other in Python3. We did our best to make the programs as similar to
each other as possible.) Each program produces the same single English word.

Difficulty is subjective. You may find subproblem C2 easier to solve than C1. But solving C1 is still
worth 1 point and solving C2 is worth 2, just as in the other tasks.

Output specification

Submit a text file containing the recovered word, in UPPERCASE.

Example

input

for x in "olleh"[::-1]:
print(x)

------------------------------

#include <iostream>
#include <string>
std::string s = "olleh";
int main() {

for (auto c=s.rbegin();
c!=s.rend();
++c)
std::cout << *c;

}

output

HELLO

Note that the answer is given in uppercase.
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Solution

Both subtasks were actually solvable without fully understanding what the code computes. In the
solutions below we go into more detail than was necessary.

Both subtasks feature code that runs for a very long time. Most of the solution lies in understanding
how to compute the same thing faster.

Subproblem C1

About one half of the program is the mysterious t function:
def t(n):

z=n
for a in range(2,n):

if t(a)>=a:
if n%a==0: z//=t(a) ; z∗=t(a)-1

return min(z+1,n)

What does it compute? Well, first of all we can try running it. For example, we can add the following
line: for n in range(50): print(n,t(n)) and then we can run the program. We will get the following output
(compressed into multiple columns to save space):

0 0 5 5 10 5 15 9 20 9
1 1 6 3 11 11 16 9 21 13
2 2 7 7 12 5 17 17 22 11
3 3 8 5 13 13 18 7 23 23
4 3 9 7 14 7 19 19 .....

Afterwards, the computation starts to be quite slow – after all, the function t calls itself quite exten-
sively. One way of speeding it up is obvious: as t is a function in the mathematical sense (its output only
depends on its input), we can speed it up by adding memoization. This step was optional, and in this
solution we will just skip it.

Instead, we can take a closer look at the code of t. There is one conditional: if t(a)>=a. When does
this happen for small values of a? For the values we know this happens for 0, 1 (but we may ignore those,
as the cycle for a starts from 2), 2, 3, 5, 7, 11, 13, 17, 19, and 23. And in all those cases we have t(a)==a.
This brings us to a simple hypothesis: t(a)>=a is only true for 0, 1, and the primes, and for those inputs
we always have t(a)==a. (If we added the memoization, we can now verify this hypothesis for more values
of a.) Once we trust the hypothesis, we can now understand t as follows:

def t(n):
z=n
for each prime a that divides n: z = (z // a) ∗ (a-1)
return min(z+1,n)

The contestants more experienced in maths probably recognized this formula: this is basically Euler’s
totient formula (the number of integers that are smaller than n and relatively prime to n), only it’s
incremented by 1. In order to have a formally correct solution, we could now prove this by induction, and
the hypothesis that t(a)>=a only for primes follows trivially.

(Note that we had two reasons for the +1 at the end. First, it makes the code a bit shorter. Second,
thanks to the +1 the sequence of values of our t does not appear in the OEIS.)

But even if we have never heard of Euler’s totient formula, we can now easily improve the efficiency
of its implementation:
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def prime_factors(n):
answer = []
tmp = n
for a in range(2,n):

if a∗a > tmp: break
while tmp % a == 0:

answer.append(a)
tmp //= a

if tmp > 1: answer.append(tmp)
return answer

def is_prime(n):
return len( prime_factors(n) ) == 1

def t(n):
z = n
for a in set( prime_factors(n) ): z = (z // a) ∗ (a-1)
return min(z+1,n)

There is one last cheap trick to make the code run long: for i in range(z): A = A[1:] + A[:1]. In this
line we rotate the (very short) array A awfully many times – as z is close to a billion. Obviously, this is
useless, we can get the same result by only rotating the array (z % len(A)) times. Once we make this final
fix and execute the code, we get the final message:
CHANGE 1607055075 TO 853225920

Wait, what? This is not the final message! We were promised a single English word, what is this?
After the initial shock passes, we can notice that this is an instruction how to modify our program! The
array A does actually contain the element 1607055075. Let’s change it as instructed and see what happens:
CHANGE 853225920 TO 646197696

Oh, okay. This might go on for a while. If we are lazy to apply the changes by hand, we can always
write a shell script to do it for us:
#!/bin/bash
output=$( python3 c1.py )
echo $output
output=$( echo $output | grep CHANGE )
if [ ”$output” == ”” ] ; then exit ; fi
from=$( echo $output | cut -d ’ ’ -f 2 )
to=$( echo $output | cut -d ’ ’ -f 4 )
sed -e ”s/ $from,/ $to, /” < c1.py > tmp ; mv tmp c1.py

Here is the list of all necessary changes (again, split into multiple columns):
CHANGE 1607055075 TO 853225920 CHANGE 60212160 TO 45005760 CHANGE 3779136 TO 2519424
CHANGE 853225920 TO 646197696 CHANGE 45005760 TO 33006528 CHANGE 2519424 TO 1679616
CHANGE 646197696 TO 443952576 CHANGE 33006528 TO 22006080 CHANGE 1679616 TO 1119744
CHANGE 443952576 TO 295970112 CHANGE 22006080 TO 16158528 CHANGE 1119744 TO 746496
CHANGE 295970112 TO 197318592 CHANGE 16158528 TO 10777536 CHANGE 746496 TO 497664
CHANGE 197318592 TO 135442368 CHANGE 10777536 TO 7978176 CHANGE 497664 TO 331776
CHANGE 135442368 TO 90310464 CHANGE 7978176 TO 5458752 CHANGE 331776 TO 221184
CHANGE 90310464 TO 60212160 CHANGE 5458752 TO 3779136 CHANGE 221184 TO 147456

And after we make the last change, suddenly the behavior of the program changes substantially, and
it prints the desired password: MATTER.

Bonus questions: Where do all those letters come from? Is it possible to read the answer right at the
beginning, without finding the value 147456? And what’s up with the change in the last step, where did
the CHANGE disappear?

And for one additional Easter egg: when you have the program that prints MATTER, try deleting the
line “A.insert(1,z)” and the characters “8,” and see what happens.

Subproblem C2

Now what’s going on here? First of all, this program clearly outputs a sequence of pairs of floating
point numbers. Those can be points in the plane, or something like that, but where is the message? But
let’s not get ahead of ourselves.
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Clearly, n is a simple generator of pseudorandom numbers and s is its state. In the main program we
have an infinite loop that generates those pseudorandom numbers into b, and whenever g(b) is False, the
variables x, y get changed. Once every 1000 steps we get the variables printed to the output.

Okay, so let’s find the values of b for which g returns False. Again, the best way is just to guess this
by running g for many inputs. For instance, if we run g for b up to a million, we will get a bunch of such
inputs. And the largest one of them will be 438. And if we extend the range to a few more million, there
won’t be any new values. Randomly chosen b will also always return True.

Hypothesis: there are only very few values of b such that g(b) is False, and all of those are small.
This hypothesis is actually easily verified by reading the implementation of g: large values of b lead

to large values of i, and those point out of foo and into the string HeHeHe. Once i exceeds 145, the return
values will be periodic, and as we can see, the string HeHeHe clearly makes all of those return values True.

Now we know that we can simply ignore the loop with 1000 iterations in the main program. Why?
Because we are generating (pseudo)random values in the range [0, 232) and there are only very few good
values. Usually, none of those 1000 iterations will hit a good b, so there will be no change. Sometimes, if
we are lucky, there will be one change, and very very rarely there might be two or more. So the output
of our program will usually contain the same pair x, y many times in a row, and we probably won’t miss
any change. Thus, instead of the loop we may simply print the x, y each time they change.

And when we get here, we already know everything we need to solve the problem. In the program, we
clearly split each b into two coordinates in the line x, y = (b%21+x)/21, (20-b//21+y)/21. What does this line
actually do? Imagine that the plane is divided into cells of size (1/21)×(1/21). This code uses b to compute
the coordinates of one of those cells, and then it generates new coordinates x, y somewhere within that
cell. We can now, for example, interpret the printed out values x, y as “mouse clicks” and paint the cells
that got clicked on. Or we can interpret g() as a bitmap that states which cells are “good” (may be
selected for a mouse click) and which are “bad”. The two interpretations are equivalent, for the chosen
pseudorandom generator all “good” cells do get clicked on. And as we’ll soon see, both interpretations
would actually give you the correct solution.

But hold on. The part about dividing the plane into cells sounds awfully technical and, let’s be
honest, it’s not really appealing. Surely there has to be more to this task? And there is. With a very tiny
modification, the program can be caused to produce the answer in a stunning visual way.

What we need to do is to replace the simplistic generator n() by a standard random generator, and to
speed the code up by only generating the good possibilities (or at least by restraining b to a short range).
This is the resulting code:
x, y = 0., 0.
while True:

b = randint(0,500)
if not g(b):

x, y = (b%21+x)/21, (20-b//21+y)/21
print(x, y)

Yay, we have a steady stream of numbers! . . . and what now? Where is the answer?
We already mentioned the idea that the pairs x, y may be some points in the plane. Their names seem

to agree, after all. Now that we have a lot of them, let’s take a look at them! One tool that can easily
be used to do this is gnuplot. Just generate a bunch of points (say 100k of them), save them into the file
data, and then run gnuplot with the commands set size square and plot ’data’ linetype 0. The output you
should obtain is shown in the following figure.
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Wow, that seems to be a QR code! Maybe it hides our answer!

Nope. This is the Code Inception task. Scanning the QR code with your smartphone (or uploading it
to an online service that reads QR codes) reveals the following text:

88767->7123398

And just as in C1, this is an instruction to modify the original program. In our case, we are supposed
to change the constant bar. After we do so and repeat the same process, we get a new QR code, quite
different from the previous one. Scanning this one reveals our final answer: FOOTBALL.

Note that even if we ran the program “infinitely long”, the points it generates would never produce
the exact QR code. This is because the picture generated by the program is not the full QR code. The
picture is a fractal : each cell that should be black in the QR code actually contains a smaller copy of the
fractal. See the Wikipedia entry “Iterated function system” for more information on such fractals.

Of course, the fractal is similar enough to the real deal, so it can be easily scanned.
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Problem D: Do the grading

Did you take part in the practice session? If you did, you will be able to read this problem statement
faster. But if you missed the practice session, don’t worry, we will tell you all you need to know.

One of the practice tasks was the task Rearranged alphabet. In this task we asked the contestants to
find a short string of lowercase letters such that each of the 26! permutations of a through z occurs in it
as a (not necessarily contiguous) subsequence. For example, if the alphabet only consisted of a, b, and c,
abcabac would be a valid answer, but abccba would not (both bac and cab is missing).

Solving the practice task was simple enough: you just have to find a pattern and print the correspon-
ding string. On the other hand, grading the practice task is much more complicated: you have to read a
string and check whether it actually contains all possible permutations.

Preparing the grader for the practice problem was quite fun. In fact, it was so much fun that we
wanted to share it with you.

Problem specification

You are given a string of lowercase English letters.
In the easy subproblem D1, check whether each of 26! permutations of a through z occurs in the

string as a subsequence.
In the hard subproblem D2, count the number of permutations of a through z that do not occur in

the given string as a subsequence. As this number may be quite big, output it modulo 65 521.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case consists of a single line containing a nonempty string of lowercase English letters.
In the easy subproblem D1, t ≤ 150 and none of the strings is longer than 2 500 characters.
In the hard subproblem D2, t ≤ 20 and the sum of lengths of all strings does not exceed 1 000.

Output specification

For each test case, output a single line with the answer.
That is, in the easy subproblem D1, output “YES” (without quotes) if the given string contains all

permutations, or “NO” if it doesn’t.
In the hard subproblem D2, output the number of missing permutations modulo 65 521.

Example

input

1

abc

In D2, note that 26! mod 65521 = 8297.

output for subproblem D1

NO

output for subproblem D2

8297
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Solution

Throughout this analysis we denote the set of lowercase English letters by Σ, its size by σ (σ = 26),
the input string by w, and its length by n.

Easy subproblem

For every set of letters S (S ⊆ Σ), we compute the length of the shortest prefix of w such that each
of the |S|! permutations of letters from S occurs in this prefix as a subsequence. We denote this value by
f(S). Clearly, string w contains all permutations of Σ iff the value of f(S) is defined for all S (i.e. the
required prefix always exists).

For the empty set, the empty prefix satisfies the requirement, therefore f(∅) = 0. If the values of
f(S′) for all S′ ( S ⊆ Σ are already known, we can proceed to compute the value of f(S). Let us pick
a letter a ∈ S and focus on the permutations of S that end with a. Now it is easy to determine the
shortest prefix containing all such permutations – it must cover the prefix of length f(S \ {a}) and the
first occurrence of a coming next. (If there is no occurrence of a following the prefix f(S \{a}), the string
w does not meet the requirements.) We try all letters a ∈ S and assign to f(S) the maximum of the
prefix lengths we obtain.

To speed up the computation of f , we precompute for every position in w and every letter of Σ its
first occurrence following the position. This can be easily done in time O(σn). After that we can compute
the values of f in time O(σ2σ).

Hard subproblem

We take a similar approach to solve the hard subproblem. Let us denote by g(S, `) (for S ⊆ Σ, 0 ≤
` ≤ n) the number of permutations of letters from S that do not occur in the first ` characters of w as a
subsequence. Hence the answer to our problem is the value of g(Σ, n).

Again, we first compute the values of g for smaller arguments and then proceed to larger ones. To
determine the value of g(S, `), we sum the numbers of missing permutations ending with a for all a ∈ S.
For a fixed a, the number of missing permutations is equal to g(S \ {a}, i), where i is the last occurrence
of a in the prefix `.

This solution runs in time O(σn2σ), which is quite a lot. However, our main problem are the memory
requirements: To store all values of g we need about 100 · 226 · 2B = 12.5GB of RAM on the longest
input string. Fortunately, many of the values can be discarded during the computation – we use g(S, `)
only when ` is the last occurrence of some letter a and a /∈ S. With this optimization we need only
26 · 225 · 2B = 1.625GB of memory. Solving the entire hard input took us about one hour on a single
processor core, but one can solve different test cases on different computers/cores in parallel and be done
in a few minutes.
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Problem E: Exploring the cave

After the success of “open sesame!”, Ali Baba experimented with various other crops. Most of them
didn’t do anything out of the ordinary, until suddenly “open sugarcane!” caused one of the rocks to shift
and reveal the entrance to a peculiar cave.

The cave consisted of several chambers. The entrance lead directly into one of these chambers, we
will call it the starting chamber. Some pairs of chambers were connected by one-way tunnels. Each of
the tunnels was of one of three types: some tunnels had abrasive walls, others had battered walls, and
the rest had calcified walls. As you have probably already guessed, we will denote the tunnel types a, b,
and c.

For any chamber, there could have been arbitrarily many tunnels entering it, and arbitrarily many
tunnels leaving it – including multiple tunnels of the same type, or no tunnels at all. Also, there could
have been tunnels that start and end in the same chamber.

0

1a

b

3
a

c

c

2

a c

b

An example of a cave with 4 chambers and 8 tunnels.

Of course, it’s not really a good idea to explore a cave with one-way tunnels on your own. Luckily, Ali
Baba can enlist the help of the forty thieves (and their infinitely many friends, if necessary). One round
of cave exploration looks as follows:

1. Ali Baba chooses a finite (possibly empty) sequence of tunnel types (a string of letters).

2. One after another, the thieves repeat the following procedure:

(a) The thief takes a long piece of rope and fastens one of its ends to his waist.

(b) He enters the starting chamber.

(c) He tries to follow a sequence of tunnels that 1. corresponds exactly to the sequence of types
selected by Ali Baba, and 2. has not been traveled (as a whole) by any of the previous thieves.

(d) If successful, the thief remains waiting in the final chamber reached by his walk. (We assume
that each chamber is large enough to accommodate all the thieves that end their walks there.)

3. As soon as a thief is unable to perform his task (each possible sequence of tunnels has already been
traversed by someone), the exploration round stops. The last, unsuccessful thief is removed from
the cave – Ali Baba uses the thief’s rope to pull him out.

At this moment, consider the set of chambers that contain at least one thief. The set of chambers
will be called significant. (Note that sometimes the significant set may even be empty.)

4. Ali Baba uses the ropes to pull all the thieves out of the cave.

Of course, different choices of the sequence in step 1 can lead to different significant sets of chambers
in step 3. Consider the example above. If Ali Baba chooses the sequence ac, he will discover the significant
set {2, 3}: there will be one thief going 0→ 3→ 2 and two other thieves going 0→ 1→ 3 (each of these
two using a different tunnel to get from 1 to 3). The sequence bcb produces the significant set {3}, the
empty sequence produces the significant set {0}, and the sequence ccc produces an empty significant set.
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Problem specification

You are given the total number n of chambers in the cave. Ali Baba has also told you that they tried
to explore the cave using all possible sequences of tunnel types (even though there’s infinitely many of
them!) and that they were able to find exactly d different significant sets of chambers.

Find whether such a cave system exists. If yes, find one example.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case consists of a single line with the two numbers: n and d.
In the easy subproblem E1, 1 ≤ n ≤ 10 and 1 ≤ d ≤ 100.
In the hard subproblem E2, 1 ≤ n ≤ 22 and 1 ≤ d ≤ 109.

Output specification

For each test case, there are two possible outputs.
If there is a cave with the given parameters n and d, output the description of one cave as a sequence

of tunnels. In the first line, output the number m ≤ 5000 of tunnels in your cave. (If there is a valid cave,
there is always one with much less than 5000 tunnels.) In each of the following m lines, output one tunnel
in the form “x y z”, where x is the chamber where the tunnel starts, y is the chamber where it ends, and
z is one of a, b, and c. (The chambers in the cave are numbered 0 through n− 1, where chamber 0 is the
starting chamber.)

If there is no such cave, output a single line with the integer -1 instead.
You may output additional whitespace. (Note that we do so in the example output for clarity.)

Example

input

3

2 3

4 7

1 100

In the first test case the cave we produced has three
significant sets of chambers: ∅, {0}, and {1}.
In the second test case our answer is the cave
shown on the previous page.
In the third test case it is obvious that there is no
such cave.

output

1
0 1 a

8
0 1 a
0 1 b
0 3 a
1 3 c
1 3 c
3 3 b
3 2 c
2 0 a

-1
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Solution

The first crucial observation: each significant set of chambers is a subset of the set of all chambers.
Therefore, for a cave with n chambers, there can be at most 2n significant sets. As we show below, this
necessary condition is also sufficient: whenever d ≤ 2n there will be a solution.

Counting the significant sets

Instead of doing the cave exploration as described in the problem statement, we can do it incrementally.
Imagine the starting chamber full of thieves. Now, Ali Baba announces a letter x, each of the thieves

chooses a tunnel with that letter, and follows it to its destination. What have we obtained? The thieves
now occupy precisely the significant set of chambers that corresponds to the letter x. Next, Ali Baba
announces another letter y and again each of the thieves moves. Once the thieves move for the second
time, we now have the significant set of chambers that corresponds to the string xy. (Of course, assuming
that there are enough thieves to cover all possibilities.) And so on.

When doing the above process, moving the thieves one tunnel at a time, it is easy to note that each
combination of the current set of occupied chambers and the next letter uniquely determines the next set
of occupied chambers.

We can use this observation to construct all reachable significant sets incrementally. At the beginning,
we know that the set {0} is significant – it corresponds to the empty string. Now, we can construct (up
to) three other significant sets: the set reached from {0} by saying the letter a, the set reached for b,
and the set reached for c. Then, for each of these sets we can repeat the same process (skipping sets we
already discovered), and so on.

Effectively, we are discovering all the reachable significant sets using a breadth-first search.
The time complexity of this algorithm is O(n2n) – exponential in n, but significantly better than “try

all possible strings” (there’s infinitely many of those, after all).
Note that we used this algorithm to check the correctness of your submissions. And if you discovered

it, you could use it, too.

Easy subproblem

Given the above algorithm, we can try to get a feeling about the problem. A simple way of discovering
how it all works: generate a bunch of random caves and for each of them compute the number of significant
sets. And surprise: you will soon discover that you are seeing examples for all possible d ≤ 2n.

Indeed, the easy subproblem can be solved simply by generating enough random caves and picking
the ones we want. It turns out that for each solvable (n, d) given in the easy subproblem there is plenty
of such caves, so if we look long enough, we are bound to run into one.

Hard subproblem

The more experienced contestants probably saw through the disguise and rephrased the question in
terms of automata: Find a nondeterministic finite automaton (NFA) with n states such that the equivalent
deterministic automaton (DFA) constructed via the subset construction has exactly d reachable states.
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It turns out that for a ternary alphabet each (n, d) such that 1 ≤ d ≤ 2n has a solution. There is
also a significantly stronger result: for each (n, d) such that n ≤ d ≤ 2n there is a minimal NFA with
n states such that the corresponding DFA constructed via the subset construction is also minimal and
has d states. (Note that when considering minimality we also have to take accepting states into account,
which we won’t do in our problem.)

One possible construction is given in the paper G. Jirásková: Magic Numbers and Ternary Alphabet
(2009). Her construction also has the minimal-FA property described above. We are too lazy to include
the construction here :)
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Problem F: Feeling lucky?

Last year the IPSC was so successful that we earned n coins. And they are no ordinary coins: they
are perfectly identical coins made of solid gold.

Sadly, there are some problems with our coins. First of all, we don’t actually have them. The coins
are locked in a vault in Absurdistan. And second, we just got word that one of our coins has been stolen
and replaced by a fake one. The fake coin slightly differs from the real ones in weight, but we do not
know whether it is heavier or lighter.

So far, our situation looks like one of those weighing puzzles, doesn’t it? We bet you would love to
take balance scales and start comparing the weights of some coins in order to identify the fake one as
quickly as possible.

Well, it kind of does look like a weighing puzzle, but the weighing part is not the major issue here.
Remember that all our coins are in a country far far away? We will not be the ones weighing the coins,
we can only send our request to the natives.

Why does this change anything, you ask? Well, for a start, there is no Internet in Absurdistan. Each
time we want to make some weighings, we write down a list of requests, send it by regular post and wait
a week or so for the answers.

To add insult to injury, the natives in Absurdistan are very lazy. Each time a native is asked to weigh
some coins, with probability p = 0.7 he will ignore the request and just give you a random answer instead.
That is, only 30% of your requests will actually be executed, the other 70% will receive random answers.
On the other hand, the natives are precise. If the native decides to perform the requested weighing, he
will always get and report the correct result.

The scales used by the natives are extremely precise balance scales. They consist of two pans (we will
call them “left” and “right”) that are connected by a beam with a fulcrum in the middle. One may place
some coins into the left pan, some other coins into the right pan, and then read off one of three possible
results: either one of the pans is heavier, or the scales balance. (It only makes sense to place the same
number of coins onto each pan. If you ask to place more coins into one pan than the other, the pan with
more coins will always be heavier. Of course, even if this is the case, the native may still skip the weighing
and report a random answer.)

Problem specification

There are n coins, labeled 1 through n. The labeling was chosen uniformly at random. Out of the
coins, n− 1 are real and one coin is fake. The fake coin is either lighter or heavier than the real coins. As
the counterfeiter was trying his best, both options are equally likely (probability 50%).

You will interact with our grader using multiple submissions. Each submission represents one letter
sent to Absurdistan. You will first send some letters that require the natives to perform some weighings,
and finally one letter announcing which coin is the fake one and also whether it is heavier or lighter than
the real ones. In each letter in which you request weighings, you must request exactly k of them.

In each subproblem of this task there are two criteria you need to satisfy in order to solve the
subproblem:

• You may send at most s letters. (That is, you may make at most s−1 submissions, each requesting
k weighings, and then you must submit your answer.)

• Are you feeling lucky? Well, today your luck has run out. If you are thinking about just taking a
random guess, you can forget it right now.

Your answer will only be accepted if you can be at least 99% certain that your answer is correct,
based on the weighings you made, their outcomes you received, and the assumption that all random
events were independent and had the stated probabilities.
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If you fail (by guessing incorrectly, guessing without 99% certainty, or using up all s submissions
without guessing at all), the whole subproblem is restarted and you can try again from the beginning.
A new fake coin in chosen, and you get to make another s submissions in the “new game”.

Constraints

In both subproblems, the probability of a particular native being lazy is p = 0.7. (That’s a lot!)

Easy subproblem F1: The number of coins is n = 81. You may send at most s = 6 submissions (per
restart), and in each submission that requests weighings, you have to request exactly k = 50 of them.

Hard subproblem F2: The number of coins is n = 250. You may send at most s = 11 submissions
(per restart), and in each submission that requests weighings, you have to request exactly k = 15 of them.

A different rule replaces the standard limit of at most 10 submissions per subproblem. Here, only
Wrong answers count towards the limit. In each subproblem, you may only receive a Wrong answer
message at most 9 times. If you receive a 10th Wrong answer, all further submissions will be rejected.

Submission specification

The first line of your file should contain a single letter: either ‘G’ (a guess) or ‘W’ (a list of k weighing
requests).

If your submission is a guess, the second line of your submission should contain the number of the
fake coin (between 1 and n, inclusive), a space, and a letter. The letter should be ‘L’ if the fake coin is
lighter than the real ones, and it should be ‘H’ if the fake coin is heavier.

If your submission is a list of k weighing requests, it should contain exactly k more lines. Each of those
lines should contain a string of n characters that describes one weighing request. The i-th character of a
request should be ‘L’ if coin i should be placed on the left pan of the scales, ‘R’ for the right pan, and ‘-’
if the i-th coin should remain off the scales.

Evaluation result specification

If your submission is syntactically incorrect, you will receive a Wrong answer with an explanation. A
syntax error does not cause a restart, nor is it counted in the s allowed submissions.

If your submission is a successful guess, you will receive an OK, thus solving the subproblem. If your
guess fails, you will receive a Wrong answer with an explanation, and the game is restarted.

If your submission is a list of weighing requests, you will receive a Continue and a string of k characters.
The i-th character is the result of your i-th weighing request: ‘L’ if the native claims the left pan is heavier,
‘R’ if he claims the right pan is heavier, and ‘=’ if he claims both pans are exactly equally heavy.

Note that each request on your list is handled by a different native, and (independently of each other)
each of those natives generates his reply uniformly at random with probability p.

Continue messages do not affect the team’s rank. They are not worth any points, nor do they add
penalty time. Wrong answers are scored as usual.

Good advice

If at first you don’t succeed, try again!
As there are probabilities involved, even the best strategy might sometimes fail. If you trust that your

game strategy makes sense, give it another attempt if the first one doesn’t make it.
(Of course, if your strategy is bad, your chance to solve this problem would be zero even if we granted

you a thousand attempts.)
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Example

In the example below, we have n = 6 coins and we request k = 3 weighings at a time.
One possible first submission:

submission

W
LLRR--
-L---R
--LRLR

This is what you may receive as our response:

response

Continue: LL=

This means that you got the following responses:

• Coins 1+2 are heavier than coins 3+4.

• Coin 2 is heavier than coin 6.

• Coins 3+5 are exactly as heavy as coins 4+6.

If we trusted these answers, we could now conclude that coin 2 is the fake one, and it is heavier than
the real coins. (Coins 3, 4, 5, 6 have to be real from the third answer, and then coin 2 is fake and heavier
from the second answer.) We could then submit the corresponding guess:

submission

G
2 H

However, in this problem we have to be certain enough before making our guess.
And right now we shouldn’t be too certain yet. After all, each of those three responses has probability

70% of being the result of a random choice. The submission would be evaluated as a Wrong answer, and
the subproblem would be restarted.

At the moment (assuming p = 0.7) the actual probability that “2 H” is the correct answer is only about
36.96%. The second most likely answer is currently “1 H” with probability about 16.17%. (The answer
“1 H” corresponds, among other possibilities, to the situation when the response to -L---R was generated
at random and the other two are correct.)
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Problemsetter: Monika Steinová
Task preparation: Monika Steinová, Michal ‘Žaba’ Anderle, Michal ‘mišof’ Forišek

Solution

We will first show how to solve the easy subproblem without the probabilistic part, then we’ll deal with
the probability. Afterwards, we will show a better solution that is also able to solve the hard subproblem.

Deterministic weighing

For simplicity, let’s first try to solve an exact version of the easy task: i.e., the version where we make
weighing requests sequentially, and each of them will be answered correctly.

We will now show a simple way how one can solve the problem for n = 3q coins using q+ 1 weighings.
Divide the coins into three piles (A, B, and C), each containing n/3 = 3q−1 coins. We will use the

first two weighings to determine two things:
– which of the piles contains the fake coin,
– whether the fake coin is lighter or heavier than the real ones.

This can be done, for example, by first comparing A and B and then comparing A and C.
(If A and B are equally heavy, the fake coin is in C and the second weighing tells us whether it is

heavier or lighter than the real ones. If A and B differ, C coins are real and the second weighing tells
us whether A or B contains the fake coin. From the result of the first weighing we can then also deduce
whether the fake coin is heavier or lighter.)

Now we have 3q−1 coins. One of those coins is fake and we know whether it is lighter or heavier than
the real ones. It is now easy to find the fake coin in q − 1 weighings.

The above solution is sufficient for our purpose, but it is not optimal. Optimally the problem can be
solved for (3x − 3)/2 coins in x questions. (See http://www.faqs.org/faqs/puzzles/archive/logic/
part5/, section balance.s for details of the strategy.)

Easy subproblem

Now, let’s get back to the randomized version. We have n = 81 = 34 coins, so in the deterministic
setting we could solve it in 5 weighings. Conveniently, in the easy subproblem we can send s − 1 = 5
letters. We can now simply use majority voting: In each letter, request k copies of the same weighing.
The outcome will be the answer you receive the most often.

The constraints were set so that in ∼ 80% of your attempts this would give you the required certainty
that your answer is correct.

Hard subproblem

The hard subproblem cannot be solved with the above strategy. (Or rather, the probability of its
success is very low.) Below we present a different approach that could also be used to solve the easy
subproblem.

If we know nothing about the fake coin, the best questions we can ask are precisely the questions we
used at the beginning of the first solution: if you divide the coins into three equally large piles and weigh
two of them, each of the answers you might receive has probability 1/3. (The answer to this question will
give you the most information you can get by asking a single question.)
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A good strategy to solve the hard subproblem is to use the above observation and randomization.
The strategy: Send s− 1 letters, each requesting a set of k random weighings, each of the above type. In
the final round submit the answer that is consistent with most of them.

The parameters in the hard subproblems were set so that with this approach in ∼ 85% of your
attempts you would reach the 99% certainty that your answer is correct.

Beyond the hard subproblem

Why does the above strategy work? How are the solutions evaluated? And is there an even better
strategy? These are the questions we will now answer.

Our grader uses Bayesian inference to derive the probabilities. At the beginning, the probability of
each answer is 1/(2n). Observing the result of each weighing changes these probabilities.

More precisely: Let P (c, l, x) be the probability that the coin c (1 ≤ c ≤ n) is the fake and has weight
l (l ∈ {H,L}) after processing x weighing requests. Initially, we set P (c, l, 0) := 1/(2n) for all (c, n). The
values P (c, l, x+1) are then computed from the values P (c, l, x) as the appropriate conditional probability.
P (c, l, x+1) = Pr[(c, l) is the answer | we saw the answer of weighing x+ 1 given the distribution P (c, l, x)].

The same Bayesian inference can be used in our solution to (slightly) increase its chance of success.
When sending the later letters, we will not choose the weighings at random. Instead, we will choose
weighings that maximize the expected amount of information we’ll get from them. (Or, as an easier
alternative, we can always generate a lot of random requests, compute the expected amount of information
gained from each, and then ask the k best ones.)

Our solution that used this approach could reach the required 99% certainty in ∼ 92.5% of runs.
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Problem G: Grid

You are given a rectangular grid consisting of r×c points. The lower left corner has coordinates (1, 1),
the upper right corner has coordinates (c, r). The neighbors of a point (x, y) are the points (x − 1, y),
(x + 1, y), (x, y − 1), and (x, y + 1), if they exist. A path is a sequence of points such that subsequent
points are neighbors and each point appears on the path at most once.

Problem specification

Given two distinct points (xs, ys) and (xf , yf ), find one longest path from (xs, ys) to (xf , yf ).

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case consists of a single line with six integers – r, c, xs, ys, xf , yf .
For both the easy subproblem G1 and the hard subproblem G2, you may assume that 1 ≤ r, c ≤ 100

and rc ≥ 2. Additionally, for the easy subproblem G1 you may assume that r ≤ 5.

Output specification

For each test case, output a single string describing one possible longest path. If there are multiple
longest paths, output any one of them.

A path a1, a2, . . . , ak is described by a string consisting of k − 1 letters U, D, L, R. The i-th letter in
the string describes the move from point ai to ai+1:

If ai = (x, y) and ai+1 = (x, y + 1), the i-th letter should be U.
If ai = (x, y) and ai+1 = (x, y − 1), the i-th letter should be D.
If ai = (x, y) and ai+1 = (x+ 1, y), the i-th letter should be R.
If ai = (x, y) and ai+1 = (x− 1, y), the i-th letter should be L.

Example

input

2

1 10 2 1 4 1

3 3 1 1 2 2

output

RR
RRUULLDR

first example: second example:
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Task authors

Problemsetter: Vlado ‘Usamec’ Boža
Task preparation: Vlado ‘Usamec’ Boža, Jano Hozza

Solution

Let’s assume without loss of generality that r ≤ c. First, we will describe the upper bound on the
path length. Let’s define the color of a point (x, y) to be (x + y) mod 2. If rc is even, then both colors
have the same number of points. If rc is odd, then color 0 has one point more than color 1.

Now consider any path. Let s, f be the endpoints of the path. The path alternates between points
with color 0 and color 1. Using the coloring, we can derive the following upper bounds on the path length:

• If rc is even and s, f have different colors, then the path cannot be longer than rc.

• If rc is even and s, f have the same color, then the path cannot be longer than rc− 1.

• If rc is odd and s, f have color 0, then the path cannot be longer than rc.

• If rc is odd and s, f have color 1, then the path cannot be longer than rc− 2.

• If rc is odd and s, f have different colors, then the path cannot be longer than rc− 1.

Some additional bounds apply in special cases when r = 1, 2, 3.

• If r = 1, then the path cannot be longer (or shorter) than |xs − xf |+ 1.

• If r = 2, ys 6= yf , and |xs−xf | ≤ 1, then the longest path length is max(xs +xf , 2c−xs−xf + 2).

• If r = 3, c is even, and one of the endpoints has color 0 and the other has color 1: We can assume
that s has color 1 and f has color 0. If (ys = 2∧xs < xf )∨ (xs < xf −1), the path cannot be longer
than rc− 2. If that condition holds when we change coordinates of endpoints from (xs, ys), (xf , yf )
to (c− xs + 1, ys), (c− xf + 1, yf ), then the path also cannot be longer than rc− 2.

Given r, c, xs, ys, xf , xf , denote U(r, c, xs, ys, xf , yf ) to be the upper bound on the path length for the
given endpoints and grid size, as given by the above conditions. It can be proven that a path of such
length will always exist.

Now let’s find this path. If rc is sufficiently small (e.g. less than 30) we can find a path using brute-
force. If rc is big, we can use following tricks:

We can find c1, r1 such that xs ≤ c1, xf > c1 and U(r, c, xs, ys, xf , yf ) = U(r, c1, xs, ys, c1, r1) +
U(r, c− c1, 1, r1, xf − c1, yf − c1). This means that we split the rectangle into two by some vertical line.
The endpoints are in different rectangles. Then we try to find a path from (xs, ys) to (c1, r1) and a path
from (c1 + 1, r1) to (xf , yf ) such that these paths do not cross the splitting line. Similarly, we can also
split the rectangle by a horizontal line.

The other process is stripping. We will again split our rectangle into two rectangles A,B by some
vertical line. But now we will require the both endpoints to be in A, and B to have an even number
of columns. Thus, B contains a Hamiltonian cycle. Denote the number of columns of A as c2. Then if
U(r, c, xs, ys, xf , yf ) = U(r, c2, xs, ys, xf , yf ) + (c− c2) ∗ r we can find the path by first finding a path in
A and then expanding it to go through B.

So we can recursively divide our rectangle into smaller ones and then merge the path into final solution.
This algorithms is adapted from algorithm given by Keshavarz-Kohjerdi et al.2.

2Keshavarz-Kohjerdi, Fatemeh, Alireza Bagheri, and Asghar Asgharian-Sardroud. ”A linear-time algorithm for the lon-
gest path problem in rectangular grid graphs.” Discrete Applied Mathematics 160.3 (2012): 210-217.
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Problem H: Histiaeus

Sometimes, you need to send someone a message without anyone knowing about the message’s exis-
tence. This is the general principle of steganography. One of the early users of steganography was an
Ancient Greek ruler named Histiaeus.

Histiaeus needed to send a secret message to Aristagoras, but worried that the slave carrying the
message would be intercepted. So the slave was given some innocent letters to fool the enemy spies, but
also carried another message, hidden in a clever manner devised by Histiaeus. The enemy didn’t notice
the secret message was there, but Aristagoras knew how to find it.

Inspired by Histiaeus, we decided to send you a secret message, hiding it the same way he did. We will
play the role of Histiaeus, you’ll be Aristagoras, and the problem statement of Problem H – Histiaeus is
the slave we sent to you, carrying the secret message.

(However, this problem statement – the one that you are reading right now – does not hold any
secrets. Searching for the secret message here would be a waste of time. Now, where else could it be?)

Problem specification

Do what Aristagoras did, and find the secret message.

Input specification

There is no input.

Output specification

For both subproblems, the correct output is a single English word written in UPPERCASE. The
secret message will tell you which word it is.
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Task authors

Problemsetter: Tomi Belan
Task preparation: Tomi Belan, Martin ‘Imp’ Šrámek

Solution

Histiaeus needed to tell Aristagoras to revolt against the Persians. To hide the secret message from
them, Histiaeus shaved the head of his slave, tattooed the message on his head, and sent the slave to
Aristagoras after his hair grew back.

Though our message is not the same as the one Histiaeus sent to Aristagoras, we hid it the same way
he did. According to the problem statement, the problem statement itself is the slave. And really, its
HTML <head> contains this:

<link rel="secret message" type="text/tattoo"
href="tattooed by Histiaeus on the slave’s head">

<meta name="congratulations" value="that was easy, now find H2">
<meta name="H1 answer" value="SUBROUTINES">

So the correct output for H1 is SUBROUTINES.

(The PDF version of the problem statement says something slightly different from the online version.
In the online version, “this problem statement” is the slave. In the PDF version, “the problem statement
for H” is the slave, but not “the one you are reading right now”.)

This only gives us the answer to H1. Where could H2 be hidden? Is there another secret message?
Well, the problem statement has more than one “head”. At the next level below HTML, there are the
headers of its HTTP response:

H2: A blue monster approaches you and says: "I know the word you need for H2.
But I won’t talk to you unless you feed me first. I’m in the mood for some
dessert... its name doesn’t matter, but it must contain chocolate."

What kind of dessert is related to HTTP, has a name, contains something, and has something to do
with a blue monster? It’s an HTTP cookie. (The blue monster is a reference to Cookie Monster from
Sesame Street.)

A simple way of creating the needed cookie is to enter document.cookie = "a=chocolate" in the
browser’s JavaScript console. Another is to use curl with the -b a=chocolate switch.

When you make a request that contains the cookie, the HTTP headers change:

H2: "Yum! All right, if you answer this question, and do it quickly,
I’ll tell you the answer for H2."

H2-Question: How much is 127 plus 486?
H2-Answer: (your answer)

The final step requires you to send your answer in a custom request header named H2-Answer. The
appropriate request can be sent with curl like this:

curl -I .../h.html -H "H2-Answer: 613"

If this is done quickly enough after the last request, the monster tells you the correct output:

H2: "Correct! The word you’re looking for is CLASSIFICATION."
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Problem I: Invisible cats

You are given a number of small grayscale images, each exactly 32 × 32 pixels in size. The images
have been encrypted. The encryption is different for the easy and the hard subproblem. Both encryption
types are described below.

There is a cat in the 21st image. There are also exactly ten other images with cats among the first 20
images. Find those ten cats!

Problem specification – easy subproblem

The pictures are encrypted in the following way: We picked a single random permutation on 32
elements. Then, for each picture we shuffled its columns using this permutation. That is, each column of
pixels is still in its original order from top to bottom, but the order of columns is now different. (Note
that we used the same permutation for all pictures.)

Problem specification – hard subproblem

The pictures are encrypted in the following way: We picked a single random permutation on 32× 32
elements. Then, for each picture we shuffled its pixels using this permutation. That is, the set of pixels is
now the same, they are just in different locations. (Again, note that we used the same permutation for
all pictures.)

Input specification

For each subproblem you are given one set of encrypted images. Each set of images is provided in two
different formats:

The first format is a ZIP archive that contains each encrypted image as a separate PGM file.

The second format is a single file that is formatted as follows: The first line contains a single integer:
the number of images. For each image, you are then given 1024 integers, each in range from 0 (black) to
255 (white). The first 32 of these integers are the colors of the first row (left to right), the next 32 is the
second row, and so on.

Output specification

Print ten whitespace-separated integers – the numbers of first ten pictures with cats, in ascending
order. Do not use leading zeroes, even though the filenames in the ZIP archive have them.

Example

input

(a bunch of pictures)

output

1 2 3 4 5 6 7 8 9 20
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Task preparation: Vlado ‘Usamec’ Boža, Peter ‘Bob’ Fulla

Solution

Solving the easy subproblem wasn’t that difficult. You could either sort the columns by hand, or you
could find some similarity measure for columns and rearrange them in a way that puts similar columns
close to each other. One example of a good similarity measure is the sum of all differences between
neighboring pixels.

The general idea for solving the hard subproblem is rather trivial: Find a measure of quality for
decrypted images. Then, find a permutation of pixels that maximizes the quality of images.

Still, the details of this approach are quite tricky. Our quality measure for images was the sum of
correlations between neighboring pixel values. For sufficiently large sets of reasonable images, maximizing
this value should lead to perfect decryption. The biggest problem is finding a permution of pixels which
maximizes this value. This problem is NP-hard (as finding shortest Hamiltonian path can be reduced to
this problem), but real problem solvers don’t let that stop them.

For example, we can try a hill-climbing approach. We start with some permutation of pixels. Then
we try to improve it by swapping some pixels and checking whether the new permutation is better. This
is repeated until we find the maximum. If we discover that we are getting stuck in local optima of the
value function, we can attempt to fix that by adding more transformations to the hill-climbing algorithm
– such as swapping bigger parts of the image, cyclic rotation of rows and colums, reversal of rows and
columns, etc.

Our sample solution searches for the optimum value by using simulated annealing.
An alternate solution we had relaxed the requirement to place the individual pixels into a square grid.

Instead, it looked for their best placement at any real coordinates within the given square – the higher
the correlation, the closer the points want to be.

And here are our heroes. (Note the few dogs that were included as an anti-guessing measure.)
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Problem J: Just a single gate

Surely you have heard about logic gates, such as AND, NOT , XOR, and many others. A logic gate
is a tiny device with some inputs and outputs that implements a Boolean function. That is, the inputs
and outputs are boolean values (0 or 1), and for each particular gate each output is uniquely determined
by its inputs.

For example, the traditional NAND gate has two inputs (let’s call them x and y) and one output
(z). All possible outputs of this gate are given in the truth table shown below. This gate computes the
“not and” function: the output is true if and only if the logical “and” of both inputs is false.

NAND: x | 0 0 1 1
y | 0 1 0 1
---+---------
z | 1 1 1 0

It is a well-known fact that the NAND gate is universal : You can construct any other gate using
only a finite set of suitably interconnected NANDs.

For example, consider the unary NOT gate – a gate that outputs 0 if the input is 1, and vice versa.
This gate can be constructed using a single NAND gate: NOT (x) is the same as NAND(x, x).

Of course, sometimes the construction is more involved. For example, to construct the binary XOR
gate (a gate that returns 1 if the inputs are different and 0 if they are equal) we need at least four NAND
gates. One possible construction:

XOR(x, y) = NAND( NAND(x,NAND(x, y)), NAND(y,NAND(x, y)) ).

The above expression has five NANDs, but NAND(x, y) occurs twice, and can be implemented by
a single gate in hardware, as shown in the figure below.

There are no universal unary gates, and only two universal binary gates: the gate NAND described
above, and the gate NOR that implements the Boolean function “not or”.

Problem specification

In this problem we are interested in ternary gates: gates with three inputs and one output. An example
of a ternary gate is the MAJ gate that returns the majority element – i.e., it returns 1 if at least two
inputs are 1, and 0 if at least two inputs are 0. Below is the truth table of MAJ with inputs w, x, y and
output z:

MAJ: w | 0 0 0 0 1 1 1 1
x | 0 0 1 1 0 0 1 1
y | 0 1 0 1 0 1 0 1
---+-----------------
z | 0 0 0 1 0 1 1 1

Easy subproblem J1: Find at least seven universal ternary gates.
Hard subproblem J2: Find all universal ternary gates.
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Input specification

There is no input.

Output specification

Each line of your output file must describe a universal ternary gate, written as a space-separated list
of zeroes and ones: the output row of its truth table, in order.

For the easy subproblem, the output must contain at least seven distinct rows, for the hard subproblem
it has to contain all universal ternary gates. (I.e., any correct output for the hard subproblem will also
be accepted if you submit it as your answer to the easy subproblem.)

Example output

0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

This is a syntactically correct output file. It describes three ternary gates: the first row is MAJ , the
second row is a gate that always returns 0, and the third row is the AND3 gate (ternary and): its output
is the logical “and” of all three inputs.

(This is an incorrect output: it contains too few gates, and the gates it contains are not universal.)
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Task authors

Problemsetter: Michal ‘mišof’ Forišek
Task preparation: Michal ‘mišof’ Forišek, Peter ‘Ppershing’ Perešíni

Solution

The easy subproblem was solvable by hand. To solve the hard subproblem, you could generate all
possible ternary gates and for each of them check whether it is universal. (This is quite tedious but it can
be done.) Alternately, if you know what makes a gate universal, you can generate the list of universal
gates much faster and with less effort.

Easy subproblem

We can easily generate a few universal ternary gates by hand. For example, the gate 11101110 has
to be universal. Why? This is the following gate: “for inputs w, x, and y, return NAND(w, x)”. Clearly
we can use this gate to construct any other gate, just as we would use the binary NAND gate – we just
connect something arbitrary to the ignored input.

In addition to this gate, there are two other ternary gates that return the NAND of two of their
inputs; and there are three more gates that do the same with NOR.

At the moment, we have 6 universal ternary gates – we only need one more.
A good guess that can easily be verified is the ternary NAND gate – one that returns 0 if and only

if all three inputs are 1. (And by symmetry, ternary NOR works as well.)

Hard subproblem: Generate and check

Generating the gates is easy, as there are precisely 28 = 256 of them. But how does one check whether
a gate is universal?

A ternary gate is certainly universal if we can construct every other ternary gate from its copies.
(Actually, constructing any single gate that is known to be universal is also sufficient.)

In order to check whether a gate G is universal, we will be incrementally constructing the set of all
ternary gates that can be obtained by wiring together one or more copies of our gate. What do all such
schemes have in common? The final output has to be computed by a G gate. Now, that G gate has three
inputs. Without loss of generality we may assume that each of them is computed independently by some
scheme of G gates – in other words, by some gate we already know how to construct out of G gates.

As a scheme, this part of the construction looks as follows:

+---+
--| |
--| X |--+
--| | |
+---+ |

|
+---+ | +---+

--| | +--| |
--| Y |-----| G |--
--| | +--| |
+---+ | +---+

|
+---+ |

--| | |
--| Z |--+
--| |
+---+

Finally, the entire gate we are just constructing has to have only three inputs, and each of the three
gates X, Y , and Z has to get some combination of these inputs. Here we could again use brute force to
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generate all possibilities, but there is a smarter way: During the construction we will assume that the
three inputs are given in their original order to each of the three gates X, Y , and Z.

The rearrangements of inputs will be addressed at another time: whenever a new gate is constructed
(including the very beginning when the first gate we know how to construct is G) we take the gate and
generate all new gates that can be obtained by rearranging inputs of the original gate. If we do it this
way, when we later choose the three gates X, Y , and Z, this choice also includes the way how the inputs
are rearranged.

Thus the entire creation of a new gate looks as follows: for each triple (X,Y, Z) of gates we already
know how to construct we combine the gates into a new one, and add this new one (and all the gates
derived from it) into the set of gates we already know how to construct.

After no more new gates can be added, we check whether the set contains all 256 possible gates.

Hard subproblem: What makes a gate universal?

We will now define five properties a gate may have:

1. Truth preservation: A gate is called truth-preserving if it gives the output 1 when all inputs are 1.

2. Falsehood preservation: A gate is called falsehood-preserving if it gives the output 0 when all inputs
are 0.

3. Monotonicity: A gate is called monotonous if changing an input from 0 to 1 never changes an output
from 1 to 0.

4. Self-duality: A gate is called self-dual if negating all inputs always negates the output.

5. Affinity: A gate is called affine if each input either never influences the result, or always influences
the result.

It is easily seen that each of this properties is preserved under composition: e.g., regardless of how
many gates you have and how you connect them, if all of them are truth-preserving, so will be the newly
constructed gate.

Also, for each of these properties we can easily find a ternary gate that does not have it.
Thus, we get a necessary condition: A gate can only be universal if it does not have any of the five

properties.
It turns out that this necessary condition is also sufficient. This is a corollary of a more general result

by Emil Post, the logician who became one of the pioneers of computability theory. The result states
the following: Any set S of logical connectives (i.e., gates) is universal if and only if for each of the 5
properties listed above it contains at least one connective that does not have the property.

Given a particular gate, each of the above properties can be tested efficiently. And this gives us a
simpler solution of the subproblem J2. Moreover, this solution can easily be generalized to gates with
arity more than 3.
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Problem K: Knee problems

You wander through a dark dungeon. All around you there are doors of different shapes and colors.
You pick one, open it and enter.

“I knew you would come,” said a voice in the dark. You come closer and see an old man with a long
white beard sitting on the floor.

“I used to be a problem solver like you,” he says, “but then I took an arrow in the knee.”
“Seriously?” you ask him.
“Well. . . not really. It’s just what all the kids were saying the last time I saw daylight.”
“So what happened to you?” you ask and sit beside him.
“The truth is, I destroyed my kneecaps on the stairs. When I was younger, I did a lot of programming

contests. And in one of them was a really nasty task. I had to determine the number of ways in which
one can go up and down a staircase with n steps. Of course, there were some constraints: when going up,
you can take two steps at a time, and when going down, you can take up to four steps at once.”

He sighs deeply. “I had no idea how to solve the task, so I found a staircase and attempted to try
every possibility. But there were so many of them that I overloaded my knees and now I can’t even walk.
So I’m sitting here and still wondering about a solution for that problem. Can you help me to finally put
a close on this?”

Problem specification – easy subproblem K1

The staircase consists of n steps. Count the ways of going up and then down the staircase, given the
following constraints:

– On the way up, you can take either 1 or 2 steps at a time.
– On the way down, you can take 1, 2, 3, or 4 steps at a time.

As the actual number of ways can be huge, compute the remainder it gives when divided by 109 + 9.

For example, for n = 5 one valid way of going up and down the
staircase looks as follows: Start on the ground, ascend to step 2, con-
tinue to step 3, and then go to step 5. Having now reached the top of
the staircase, you turn around and walk down, first descending to step
4 and then going directly to the ground (which is, at that moment, 4
steps below).

The figure on the right shows two valid ways of going up and down
the stairs for n = 5. The one described above is shown in red.

Problem specification – hard subproblem K2

The staircase consists of n steps. Count all ways of going up and then down the staircase, given the
following constraints:

– On the way up, you can take either 1 or 2 steps at a time.
– On the way down, you can take 1, 2, 3, or 4 steps at a time.
– On the way down, you can only walk on the steps you used on the way up.

Again, your task is to compute the number of valid paths modulo 109 + 9.

In the figure above, the red path is not valid for this subproblem: on the way down we walk on step
4, which was not used on the way up. The blue path (0→ 2→ 4→ 5→ 2→ 0) is valid.
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Input specification

The first line of input contains one integer number t specifying number of test cases. Each test case
is preceded by a blank line.

Each test case consists of a single line with the integer n (1 ≤ n ≤ 100, 000) – the number of steps.

Output specification

For each test case print a single line with one integer – the number of valid paths modulo 109 + 9.

Example

input

2

3

5

output

12
120

This output is correct for the easy subproblem K1.
For example, when n = 3 there are 3 ways to go
up, and for each of them there are 4 ways to go
back down.

input

2

3

5

output

8
52

This output is correct for the hard subproblem K2.
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Problemsetter: Michal ‘mišof’ Forišek
Task preparation: Michal ‘Žaba’ Anderle, Vlado ‘Usamec’ Boža

Solution

For the easy subproblem we know that the two parts of the path are independent. So if we find the
number of ways of going up and the number of ways of going down, we can multiply them to get the
result.

Let’s use up(n) to denote the number of ways to go up n steps, and down(n) the number of ways to go
down n steps. These functions can be defined recursively: up(n) = up(n− 1) + up(n− 2) and down(n) =
down(n− 1) + down(n− 2) + down(n− 3) + down(n− 4). (The initial conditions: up(n) = down(n) = 0
for n < 0, and up(0) = down(0) = 1.)

Their values can easily be computed by using dynamic programming or recursion with memoziation.

In the hard subproblem the situation is bit different: the way down depends on the way up. There are
two tricks that can help us in such situations:

First of all, we will reverse the second part of the path. Instead of a person going up and then down
(using only the set of steps used while going up), we will have two people going up the stairs, one after
another. The second person still has the same constraints: he is able to move up to four steps at a time,
and he must only use the steps used by the first person.

Now the second trick: we can construct both paths simultaneously.
In our case, it is better to focus on the person with larger stepsizes. Whenever he moves up 1 step, the

other person must also move up 1 step. Whenever he moves up 2 steps, the other person has two options:
either move up 2 steps, or move up 1 step twice. Similarly we get 3 options for the smaller-step-maker if
the larger-step-maker moves up 3 steps (1 + 1 + 1, 1 + 2, 2 + 1) and 5 options if the larger-step-maker
moves up 4 steps. Thus we derived the following recursive relation: hard(n) = hard(n− 1) + 2 ·hard(n−
2) + 3 · hard(n− 3) + 5 · hard(n− 4).
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Problem L: Labyrinth

To alleviate the stress you surely experience during programming competitions, we invite you to play
a fun browser-based game.

Problem specification

Your objective in the game will be to find your way through a labyrinth. You win when you reach the
finish tile.

The labyrinth is full of doors that will often block your way, and switches that can be used to open
and close the doors. Every door and switch is marked by a letter (or a pair of letters) and a color. Pressing
a switch toggles all doors that have the same marking.

Each of the two subproblems consists of 7 levels. Send us your solutions to all 7 levels to solve the
subproblem. Good luck!

JavaScript application

The game is a browser-based JavaScript application. You can either open it from the online problem
statement, or open l/game.html in the downloadable archive.

To move, use the arrows on your keyboard or the numeric keypad. To push a button you’re standing
on, press either “P”, the numeric keypad “5”, or Enter.

You’ll need a reasonably modern browser to play. Old versions of Internet Explorer probably won’t
work.

Input specification

There is no input.

Output specification

Your steps through the labyrinth will be recorded as a string of letters ‘U’, ‘D’, ‘L’, ‘R’, and ‘P’
(meaning “up”, “down”, “left”, “right”, and “push”, respectively). Collect the solution strings for all 7
levels in a text file and submit it.

The output file must contain 7 whitespace-separated strings. The i-th string must be a solution for
the i-th level in the subproblem.

Your output file must not contain more than 1,000,000 characters.
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Task authors

Problemsetter: Tomi Belan, Martin ‘Imp’ Šrámek
Task preparation: Martin ‘Imp’ Šrámek, Tomi Belan

Solution

Easy subproblem

Just as the problem statement suggests, the easy subproblem can be solved by simply playing the
game.

In the last two levels, the doors are organized into triplets. You have to get through each triplet, but
to do so you only need to open one door. This should remind you of 3-SAT – you have to satisfy every
clause, but to do so, you only need to satisfy one literal in it. This demonstrates how even such a simple
game can in fact represent an NP-complete problem.

The 3-SAT instances in the easy subproblem were, however, very small and easily solvable by hand.
Their only purpose was to prepare you for what you would find in the hard subproblem.

Hard subproblem

Every level in the hard subproblem had the shape of one long corridor with many triplets of doors.
That means you had to solve a SAT instance. As the instances are quite large, these levels were actually
rather impossible to be played. So, despite our promise of a game, you were better off programming the
solution.

As you are not given the level maps directly, you must first parse them from the game’s JavaScript
code. In this code, the levels are represented by numeric matrices. You must compare these matrices with
what you see in the game to find out the meanings of the numbers (e.g. 0 is a wall, 1 is a corridor etc.).
A JSON parser can be of help here.

After parsing the levels, you can start searching for triplets of doors that represent clauses. You may
notice that they are always conveniently arranged on three adjacent vertical or horizontal tiles. Once
you find all the clauses, you end up with a formula in the conjunctive normal form. To find a satisfying
assignment, you can use a third party SAT-solver or program your own. A heuristic solver should suffice,
as the formulae have many satisfying assignments.

The satisfying assignment assigns a 1 or 0 to every literal. In our game, flipping the values of boolean
variables corresponds to toggling a button. Therefore, this assignment advises you on which buttons
should be pressed.

At this point, you have two possibilities. You can play the game manually, following the list of buttons
that should be pressed and ultimately travelling through the corridor once every triplet is open. Or you
may write a program to press the buttons and follow the path to the exit for you.

Pathfinding in the level can be done by simply starting a breadth-first search from the player’s current
position. This way, you can find a path to each button that has to be pressed, press it, and then find the
newly opened path to the finish tile.
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Problem M: Morning hassle

Peter was supposed to catch a morning train at 7:30. But as usual, he overslept the alarm set to 6:30
and he just woke up with 7:29 on the clock. He only managed a single “Oh crap!” before the train was
gone. Luckily for Peter, everything can still be saved. He can take his old car out of the garage and drive
it to his destination.

Peter lives in the middle of an abandoned countryside. There is a single long straight road going across
the countryside. Peter’s home and his destination both lie on this road.

Still, Peter has a valid reason to prefer the train. The whole countryside is covered by train tracks,
and thus the road is riddled with railroad crossings. And as trains have priority over cars, you could easily
end up waiting for a long time at some of those crossings.

Moreover, even if you are not waiting for a train to pass, you still need to approach the railroad
crossings carefully – they are in pretty bad shape and if Peter were to drive carelessly, the crossing could
easily break his old car.

Problem specification

For the purpose of this task, the road is an infinite straight line. Peter’s home, his destination, each
of the railroad crossings, and Peter’s car should all be considered points. Peter’s car is the only point
that will be moving, all the other ones are stationary. The movement of Peter’s car is continuous (not
discrete).

We will be using a linear coordinate system on the road, with Peter’s home being at 0 and his
destination at some xend > 0. All coordinates are in meters, all speeds are in meters per second, all
accelerations are in meters per second squared.

All the railroad crossings lie strictly between Peter’s home and his destination, at pairwise different
coordinates xi. In the input, their descriptions are ordered by their coordinate.

There are no other cars on the road. Peter’s car can move freely along the line, including the parts
that are not between his home and his destination. However, the movement of his car is subject to the
following constraints:

• The car’s acceleration (change of velocity over time) has to be between −amax and amax, inclusive.
(E.g., if your current speed is v = 20 and amax = 1.2, after 0.5 seconds your speed can be anything
between 19.4 and 20.6, inclusive.)

• The car cannot enter a crossing when the crossing is closed because of a passing train.

• In general, the speed of the car has no upper bound – it can go arbitrarily fast.

However, the railroad crossings are special: The maximum allowed speed at a railroad crossing is
vmax (an integer).

But even when driving slower than vmax, the bumping while crossing the railroad sometimes tends
to resonate parts of Peter’s car and Peter fears that the car might break. He has already tested
that this does not happen if the speed of his car is an integer less than or equal to vmax. He now
refuses to drive over a railroad crossing using any other speed.

Therefore, whenever the car crosses a railroad, its speed at that moment has to be a positive integer.

(Note that zero is not allowed. Stopping at a railroad crossing is forbidden by law.)

Peter’s car starts stationary (v = 0) at his home. Calculate the shortest time in which it is possible
to park the car (i.e., have v = 0 again) at Peter’s destination (xend).
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Input specification

The first line of the input file contains an integer t ≤ 500 specifying the number of test cases. Each
test case is preceded by a blank line.

Each test case starts with a single line containing four numbers:

• a floating-point number xend (0.5 ≤ xend ≤ 1500.0): the destination
• a floating-point number amax (0.1 ≤ amax ≤ 10.0): the maximum acceleration
• an integer vmax (1 ≤ vmax ≤ 40): the maximum speed over a crossing
• an integer n: the number of railroad crossings (constraints are given below)

Next n lines describe railroad crossings, one per line. Each line starts with two numbers. The first one
a floating-point number xi: the coordinate of this crossing. The second one is a nonnegative integer mi:
the number of trains that will be passing through the crossing. Then, 2mi floating-point numbers follow:
for each train the start si,j and the end ei,j of the time interval when the crossing is blocked by the train.

You may assume the following things about the crossings:

• Their coordinates are in sorted order: 0 < x1 < · · · < xn < xend.
• The intervals when the crossing is blocked are given in chronological order, they do not overlap,

and they do not even touch (i.e., the end of one interval is always strictly less than the start of the
next one). The first interval starts at 0 or later, the last interval ends at 106 or sooner.

• Assume that the intervals are open – if you arrive precisely at their start or end, you are still able
to cross in either direction.

There should be no numerically unstable test cases in the test data. More precisely, for each test case
we used: 1) if we make small changes to the values si,j and ei,j , the optimal path remains essentially the
same; and 2) if we make a small change to amax, the optimal path remains essentially the same.

Subproblem-specific constraints

In the easy subproblem M1, 0 ≤ n ≤ 1 (i.e., there is at most one crossing) and 0 ≤ mi ≤ 2 (there are
at most two trains per crossing). In the hard subproblem M2, 0 ≤ n ≤ 30 and 0 ≤ mi ≤ 25.

Output specification

For each test case, output a single line with a floating-point number on it – the earliest time Peter
can be parked (v = 0) at position xend. Output sufficiently many decimal places. Answers with absolute
or relative error up to 10−6 will be accepted.

Example

input

1

10 1 3 0

10 1 30 1
5 1 2 3

output

6.32455532034
6.32882800594

In the first case, there is no crossing and so Peter may drive directly to his destination. The optimal
strategy is to accelerate until he reaches x = 5, and then to brake for the rest of the way. Note that his
maximum speed during this trip will exceed vmax.

In the second case the train will leave the crossing before Peter can possibly reach it. Still, the crossing
limits the car speed. In the optimal solution Peter will cross the railroad crossing having speed v = 3.

http://ipsc.ksp.sk/ page 49 of 52 licensed under CC BY-SA 3.0



IPSC 2013 June 08, 2013

Task authors

Problemsetter: Peter ‘Ppershing’ Perešíni
Task preparation: Peter ‘Ppershing’ Perešíni, Michal ‘mišof’ Forišek

Solution

All the conditions in the problem statement looks scary, don’t they? The good news is that because
the speed at any railroad crossing can only be an integer (and not a big one), we can easily enumerate
all possible car speeds at all crossings. But that is the second part of the story.

The first thing we need to revise are the equations concerning velocity and distance. In its simplest
form, the free-fall equation is s = at2/2 and the speed is v = at. If we start with a fixed speed v0 instead
of zero, the equation becomes s = v0t+ at2/2 when accelerating and s = v0t− at2/2 when decelerating.

This is quite enough to solve the special case where there are zero railroad crossing. The fastest way
to reach the destination in this case is to fully accelerate until we reach the midpoint between the start
and the destination, and then fully brake until we stop precisely at the destination. The time needed to
perform the maneuver is 2t where t is the free-fall time for distance s/2, i.e. t =

√
s/a.

Easy subproblem

Now, let us focus on the case where we have a single crossing and no trains. We can divide the task
into two subtasks – before and after the crossing. To tie these together, we need to match the speed in
both parts. We thus need to solve the problem “accelerate from start to the crossing, reaching speed v”
and its counterpart “brake from speed v at the crossing and arrive at the destination”. You may notice
that the subtasks are isomorphic and thus we just need to solve only one of them. Let it be first task
– given starting position x = 0, v = 0 at time t = 0, what is the earliest time we can be at position
x = xcross and speed v = vtarget?”

By tacc let us denote minimal time needed just to accelerate to the target speed, tacc = vtarget/a.
Similarly, let xacc be minimal distance needed to reach target speed, xacc = 1/2a ∗ t2acc. If x = xacc then
the answer to our question is clearly tacc. If x > xacc then by the time we accelerated to the target speed,
we are still away from the crossing. Naturally, the fastest way would be to continue accelerating till we
reach midpoint between xacc and xcross, then to delecerate and reach the crossing with exactly required
speed. Thus, we have tmin = tacc + 2 ∗ t′ where (xcross − xacc)/2 = vtarget ∗ t′ + 1/2a ∗ t′2. By solving the
quadratic equation one can easily get the result. Finally, if x < xacc then we cannot accelerate and thus
it is impossible to reach the crossing with enough speed – isn’t it? Not quite! If you look at the problem
statement again, you may notice some pecularities such as “including the parts that are not between his
home and his destination”. Does it sometimes pay off to go in reverse gear? Why, yes it does! In our case
we need to go back for at least xreverse = xacc−x. As a bonus, we already know how much time we need
to traverse distance xreverse as this is the same equation as in the no-railroad case.

To put it all together, we know the earliest time we can reach the railroad crossing for each target
speed vtarget and we can use the same formula to determine the minimum braking time after we cross
the railrod. By looking at the minimum total time over all possible crossing speeds, we can pick the best
solution.

In case the crossing is closed because of a train, we simply need to wait till it opens. But note that
waiting directly before the crossing is not going to help as we’ll lose the speed. Instead, one can simply
wait the beginning (when we have speed zero) and give Peter some time to properly wake up.
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A common mistake in the easy subproblem was treating the start and the destination as crossings
with no trains. This is incorrect because there should not be a speed restriction when crossing those
points.

Hard subproblem

We start with a simple observation that for any valid solution, the sequence X of crossing IDs we
crossed satisfies |Xj+1 −Xj | ≤ 1. More precisely, if we crossed railroad r from left to right, in the next
step we can either cross r+ 1 from left to right, or cross r from right to left. The situation is symmetrical
when crossing r in the opposite direction.

We can therefore divide the whole task into several subtasks, one subtask per each between-the-
crossings region on the line. Inside each region, the car can travel freely without any restrictions. Between
the regions, the car can travel only by the rules described previously (i.e. either we cross to the next
region in the same direction or we return to the region we came from). Let us therefore define function
Ti+,v as a set of all possible times the car can be at position xi + ε after crossing xi with speed v. Note
that 0 < v ≤ vmax. Similarly, let Ti−,v to be set of all possible times the car can be at position xi − ε
after crossing xi with speed v, −vmax ≤ v < 0. In the absence of trains, Ti+,v can be computed from
values of Ti−,v′ and Ti−1+,v′ as

T ′i+,v =
⋃
v′

{t1 + t2 : t1 ∈ Ti−1+,v′ , t2 ∈ time to cross region i starting with speed v′ and ending with v}

∪
⋃
v′

{t1 + t2 : t1 ∈ Ti−,v′ , t2 ∈ time to go back starting with speed v′ (to the left) and ending with v}

and there is a similar equation for Ti−,v. Taking crossing closing times into the account is quite simple –
we just intersect the previous result with all the allowed times for that crossing.

Next, let’s look at the set of all times t the car can take to cross the region. We start with the feasibility
question: Is is possible to accelerate/decelerate from starting speed v to ending speed v′ in distance at
most s? Without loss of generality, we can assume v < v′ as the situation is symmetrical (you can switch
start and end). (The fastest time to change the speed is tchange = (v′ − v)/a and the distance travelled
during this time is schange = v ∗ t + 1/2a ∗ t2. If s ≥ schange, the change is possible otherwise we hit
another railroad crossing before we had the chance to reach the desired speed.

Assuming s ≥ schange, We can calculate the fastest time to travel the distance s in similar fashion
as before – we take the rest of the way after we accelerate to the desired speed, divide in in two halves
and we acclelerate till we reach the midpoint, then we brake, i.e. tmin = tchange + t′ where for t′ we have
(s− schange)/2 = v ∗ t′ + 1/2a ∗ t′2.

Which other times t we can achieve? We can start introducing little braking at the beginning. The
more we brake at the beginning, the bigger distance it will take until we change the distance and the less
there will be left to go over the speed v′. In the extreme, we will brake till the point from which we will
need to accelerate just to catch up with the destination speed.

To calculate tmax, we follow the traditional recipe, but this time we will change the speed from v to
v′ at the end of the region, and we will use the remaining distance to slow us down as much as possible
– tmax = t′′ + tchange where we have (s − schange)/2 = v ∗ t′′ − 1/2a ∗ t′′2. Note that the last quadratic
equation may have two roots t′′1 < t′′2 , both of them greater than zero. In practice, it means we have
two solutions, t′′1 being what we described and t′′2 being a new fascinating behavior – brake till stop,
then reverse and go backwards for some time and only then start accelerating (braking again and going
forward). If we investigate this behavior in more details, we may notice that:

• if s ≥ 1/2v2/a + 1/2v′2/a then we can always stop and prolong our time indefinitely. This means
we can achieve times [tmin,∞).

http://ipsc.ksp.sk/ page 51 of 52 licensed under CC BY-SA 3.0



IPSC 2013 June 08, 2013

• if s < 1/2v2/a+ 1/2v′2/a and s > 1/2v′2/a (s > 1/2v2/a follows from v < v′) we have two options
– either we just slow a little and then accelerate back or we decide to continue braking more and
in order to accelerate back to the required speed, we will need to go backwards (note that we do
not go outside of the region). Moreover, once we stop, we can prolong our journey indefinitely. This
gives us possible times [tmin, t′′1 + tchange] ∪ [t′′2 + tchange,∞)

• otherwise we won’t be able to completely stop/accelerate the car without going outside of the region.
The only possible times are [tmin, t′′1 + tchange].

Determining all possible times between we cross the same railroad twice is similar to the previous
case, albeit a bit simpler. Again assume |v| < |v′|. If s > 1/2v′2/a, we simply cannot keep the car
inside the region. Otherwise, the optimal strategy for minimizing the time is to stop the car at distance
d = 1/2v′2/a. We already know what is the minimum time to go across d starting with zero speed and
finishing with speed v – that was the case we solved for the easy subproblem. Because we can stay at the
point where we stopped for any time, the maximum time is unbounded.

Finishing touches

Putting it together we have a nice bunch of recursive set equations. As a first thing, we observe that the
actual sets Ti±,v are continuous and thus can be represented by a bunch of intervals. So instead of working
with sets, we will work with interval sets where union, intersection and “plus product” {x+ y|x ∈ X, y ∈
Y } are mostly trivial operations. The second thing we need to observe is that the recursive equations
can be solved by iterating – the equations are monotonic3 (i.e. f(X,Y ) ⊆ F (X ′, Y ′) iff X ⊆ X ′, Y ⊆ Y ′)
and therefore according to Tarski’s fixed-point theorem iterating will converge towards a fixed point (our
solution). Here we note that for all test cases the number of iterations is reasonably small – in the i-th
iteration we compute all reachable states after crossing up to i railroads.

One more note about wrong solutions. A popular mistake was to only compute the answer to the
following: for each side of each crossing and for each speed, what is the earliest time when this configuration
can be reached? This is not sufficient. There are test cases where you actually need to compute multiple
intervals when the configuration is reachable, and remember the gaps when it is not.

3 With the exception of the first crossing in the left-to-right direction, where we should not forget about the possibility
that the car just started and this is its first crossing.
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