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Problem S: Solitaire

Maggie has a special deck of cards. There are 4n cards in the deck: For each i between 1 and n,
inclusive, there are four cards with the value i – the i of spades, the i of hearts, the i of diamonds, and
the i of clubs. Maggie uses this deck of cards to play a simple solitaire game.

At the beginning of the game the deck of cards is placed face down on the table. There are four
empty slots – one for each suit. Additionally, there is an empty discard pile next to the deck. The goal
of the game is to place all cards of each suit onto the corresponding slot. The cards have to be placed
onto their slot in ascending order. A more precise description of the game follows.

During the game, Maggie repeats the following steps:

1. Pick up the topmost card of the deck.

2. Look at its suit and look at the slot for the corresponding suit.

3. If the card is an ace (i.e., its value is 1), place it onto the corresponding empty slot.

4. If the value of her card is v > 1 and the topmost card on the corresponding slot has value v − 1,
place the card with value v on top of the card with value v − 1. For example, the 8 of spades can
be placed onto the 7 of spades.

5. If you were unable to place the current card onto its slot, place it face up onto the discard pile. For
example, if your current card is the 8 of spades and the top card on the corresponding slot is the 3
of spades, the 8 of spades goes onto the discard pile.

6. If there are no cards left in your deck:

If there are no cards left in your discard pile (i.e., all 4n cards have been placed onto their slots),
the game ends.

Otherwise, take the discard pile and flip it upside down to produce a new deck. Note that the order
of cards in the new deck is the same as the relative order of these cards in the original deck.

Problem specification

Obviously, Maggie will always win the game eventually, but sometimes it can take quite long.
You are given n and the initial order of cards in the deck. Compute how many times Maggie went

through her deck of cards before winning the game. In other words, the answer you should compute is
one plus the number of times she flipped the discard pile to get a new deck.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case consists of two lines. The first line contains the number n. The second line contains
a list of 4n different cards – the initial deck from top to bottom. Each card is given in the format Xy,
where X is one of the four suits and y is the value. E.g., H47 is the 47 of hearts.

In the easy subproblem S1 we have t = 20 and n = 13 in each test case. (Maggie is playing with
the standard deck of 52 cards.)

In the hard subproblem S2 we have t = 12 and 1 ≤ n ≤ 150, 000 in each test case. Because the
input file size for subproblem S2 is about 30 MB, you cannot download it directly. Instead, we have
provided a small Python 2 program that will generate the file s2.in when executed.
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Output specification

For each test case output a single line with a single integer: the number of times Maggie has to go
through her deck in order to win the game.

Note

In the real contest some large inputs will be provided in the same way as the input s2.in in this
practice problem. Please make sure you are able to generate it.

Example

input

1

3

S2 H3 S1 D3 D1 H1 D2 C1 S3 H2 C2 C3

output

2

After going through her deck once, the topmost cards on the four slots will be the 1 of spades, the
2 of hearts, the 2 of diamonds, and the 3 of clubs. The remaining cards will now be in the discard
pile. Afterwards, Maggie will flip the discard pile over and she will go through the remaining cards again
(starting again with the 2 of spades). During this second pass Maggie will be able to place all the remaining
cards.
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Solution

The easy subtask can easily be solved by a straightforward simulation of the game.
In the worst possible case, the simulation will take Θ(n2) steps. The worst possible case is actually

pretty simple: a sequence of cards of the same suit, sorted in descending order. In each pass through
the deck you will only be able to place one of the cards onto their slot. A straightforward simulation
for n = 250 000 would take hours. Given enough computational power, and considering the length of
our practice session, it was possible to solve the hard subproblem in time – but there clearly has to be a
better way!

One thing that should be obvious is that we can consider each suit separately. That is, we can
separately compute the number of rounds we need to play each suit, and then compute the final answer
as the maximum of those four numbers.

Hence, we just need to come up with a good way to solve the problem for a single suit. Let’s discover
it on an example. Assume that the spades in our deck are ordered as follows:

S10 S8 S1 S4 S7 S6 S5 S11 S2 S13 S9 S3 S12

What will happen in the first pass through the deck? We discard the 10, discard the 8, put the 1 onto
the slot for spades, discard a bunch of other cards, put the 2 onto the 1, discard the 13, discard the 9,
put the 3 onto the 2, and discard the 12. That’s it for the first pass.

You may now note that we managed to remove the first three cards from our deck: first the 1, then
the 2, and then the 3. We were able to remove the 2 in the same pass as the 1 because the 2 appeared
later in the deck. We were able to remove the 3 in the same pass as the 2 because the 3 appeared later
in the deck as the 2. And we were unable to remove the 4 in the same pass, because by the time we got
to the 3 we already discarded the 4.

But that’s precisely the observation we needed! For each i, a new round will begin between cards i
and i+ 1 are played if and only if card i+ 1 appears before card i in the deck.

Using this observation, we can easily compute the number of rounds in linear time: First, we go
through the deck and for each value we note its index in the deck. Then, we go through all values and
for each value we compare its index to the index of the next value.
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Problem T: Town

You are standing in a town with infinitely many houses. Currently, the houses do not have any house
numbers. You were given the task to fix this.

You have a box with plastic digits. For each i between 0 and 9, inclusive, there are di copies of the
digit i in your box. You can number a house by sticking the appropriate digits to its wall. For example,
on the house number 474 you will use two digits 4 and one digit 7.

You have decided that you will number the houses sequentially, starting from 1. How many houses
can you number before you run out of digits?

Problem specification

You are given the counts d0, . . . , d9 of the digits in your box. Find the largest x such that you are
able to write the numbers 1 through x using your set of digits.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line. Each test case consists of a single line containing 10 nonnegative integers –
the counts of digits 0 through 9.

In the easy subproblem T1 the sum of all di will be at most 107.
In the hard subproblem T2 the sum of all di will be at most 1016.

Output specification

For each test case, output a single line with the answer to the test case.

Example

input

1

1 3 1 1 2 1 1 2 1 1

output

10

With the digits you have, you are able to build the numbers 1 through 10. Once you do so, you will
be left with three digits: one 1, one 4, and one 7. This is not enough to construct the number 11.
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Solution

The easy subtask can be solved by brute force: generate house numbers starting from 1, for each of
them count the digits used and terminate once you don’t have enough digits to build the current number.

For the hard subtask this solution would be too slow. How can we improve it? The key is to notice
that the answer is monotonous: if we have enough digits for houses 1 through x, we have enough digits
for houses 1 through y, for any y < x. This makes it possible to determine the optimal answer using
binary search.

In order to perform the binary search we have to implement a function that takes an n and verifies
whether the box contains enough digits to produce numbers from 1 to n. This function will somehow
count the digits used in the numbers from 1 to n and compare those counts to the counts of digits in our
box.

We will now show how to calculate the value Cd,n: the number of times the digit d occurs in the
numbers 0 through n− 1. The value Cd,n can easily be computed recursively in O(log n) time as follows:

• If n = 0 then Cd,0 = 0.

• If n mod 10 6= 0, then Cd,n is Cd,n−1 + the number of times d occurs in n− 1.

• If n mod 10 = 0, imagine that you listed all the numbers from 0 to n− 1.
Look at the last digit. It cycles through 0-9 exactly n/10 times, hence you have n/10 copies of digit
d there.
Now erase the last digit. What is left? The sequence of numbers 1 through (n/10) − 1, each
repeated 10 times. How many copies of your digit d are there? Obviously, for d 6= 0 the answer is
10 · C(d, n/10).
There is a special case with d = 0: the first 10 numbers in our list (0-9) only had a single digit each.
After erasing those nothing was left (as opposed to ten 0s). Hence, for d = 0 we have to subtract
those from the result: we only have 10 · (C(0, n/10)− 1) zeros among the digits other than the last
digit.

Once we know how to compute the values Cd,n, we are all set. During the binary search we will
compute the value C0,n+1 − 1 and the values C1,n+1 through C9,n+1 and we will compare these to the
ten values we were given as the input.
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Problem U: Unusual Game Show

You may have already heard about the famous game show host Monty Hall. Back in the day, his
game show had confused many a bright mathematician.

This is how it all looked like: The contestant was shown three doors, labeled 1 through 3. There was
a prize (e.g., a new car) behind one of the doors, and a goat behind each of the other two doors. The
door hiding the prize was chosen uniformly at random. Monty knew which door contains the prize. The
game consisted of three steps:

1. At the beginning of the game, the contestant was asked to choose one of the three doors for herself.

2. Once the choice was made, Monty would open one of the doors the contestant did not choose.

Of course, Monty would never open the door with the prize. If the contestant chose the door with
the prize, Monty would open either of the other two doors, chosen uniformly at random. In all
other cases Monty would open the only door that was neither chosen by the contestant nor hiding
the prize.

3. Then, Monty asked the contestant a very tricky question: “Do you want to keep the door you have,
or do you want to switch to the other door?”

Once the contestant made her final decision, Monty opened the door she chose to show whether she
found the prize.

This game became very famous among mathematicians because the optimal strategy is very counter-
intuitive. At the end of the game, the player gets to choose between two doors. One of them contains
the prize, the other does not. Thus, on the surface it seems that the choice doesn’t matter and that the
probability of winning the prize is always 1/2. This is not true. It can be shown that the optimal
strategy for the contestant is to never keep, always switch to the other door. With this strategy, the
actual probability of winning the prize is 2/3.

Monty’s game today

Monty Hall is still hosting the game show. However, there have been some changes:

• For financial reasons, the number of doors is now d (d ≥ 3). There is one prize and d− 1 goats.

• Monty is very old. When performing a show, with probability p he is tired.

If Monty isn’t tired, he follows the above protocol. However, if he is tired, he wants to avoid
unnecessary walking. Therefore, if he has a choice in step 2, he will always open the door with
the smallest number among the doors he is allowed to open. (He is still not allowed to open the
door with the prize nor the door currently chosen by the contestant.)

• In step 3, the contestant gets to choose whether she keeps the door she has or switches to any other
unopened door. When switching, the contestant gets to choose which one of the other doors she
now wants.

• After step 3, the game is over. The remaining d − 1 doors are opened and it is revealed whether
the contestant won the prize.

Problem specification

You are given the number of doors d and the probability p. Find an optimal strategy for the contestant,
and report her probability of winning the prize if she follows that strategy.
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Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line. Each test case consists of a single line containing the numbers d and p. The
value p is always a number from [0, 1] with exactly 6 decimal places.

In the easy subproblem U1 we have t = 10 and d = 3.
In the hard subproblem U2 we have t = 100 and 3 ≤ d ≤ 100.

Output specification

For each test case, output a single line with a single real number: the optimal probability of winning
the prize. Output at least 10 decimal places. Answers within 10−9 of our answer will be accepted as
correct.

Example

input

1

3 0.000000

output

0.666666666666666667

In this example we have 3 doors and Monty is never tired, so we are playing the original game.
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Solution

The easy subtask could be solved really easily. The key is to realize that the change in rules doesn’t
actually change anything. Regardless of which door Monty opens, he is essentially telling the contestant:
“If your initial choice was wrong, this other unopened door is where the prize is.” Hence, always switch
is still the optimal strategy, and the win probability is 2/3: you lose if and only if your initial door choice
was correct.

In the general case this is no longer true, Monty’s tiredness can be a useful source of information. For
example, imagine that Monty is always tired and there are 10 doors. If you start by choosing door 1 and
then Monty opens door 3, it is certain that the prize is behind door 1 or door 2 (and not any of the doors
4 through 10).

Luckily, the optimal strategy can still be found easily. We can simply compute all the probabilities
and use them to make the optimal decision in any state of the game.

We are interested in the following conditional probabilities: Given that I chose door a and then Monty
opened door b, what is the probability that the prize is behind door c?

We can compute these probabilities directly from their definition: as the actual probability of that
event, divided by the probability that Monty will open door b in any situation. And the denominator is
simply a sum over whether Monty is tired or not, and over all doors that can contain the prize.

Once we know the conditional probabilities described above, the optimal strategy follows. First, for
a fixed door a we can, for each b, evaluate the probability that Monty opens b and if he does, we find the
door c that is most likely to contain the prize and switch to that door. In this way, we can compute our
probability of winning if we start by choosing door a. Finally, we do that for each possible a and pick
the best one. See our sample implementation for more details.

Of course, instead of letting a program solve the game for us we can also solve it on paper. Let’s see
what we can derive about it.

First of all, the initial door choice still doesn’t actually matter. The situation after our initial choice
always looks the same: there is one chosen door and an ordered sequence of doors that weren’t chosen.
Thus, without loss of generality, we will assume that we chose door d.

There are now three possibilities for what Monty will do:

• He may open door 1. Regardless of whether he did so because he was tired or because he chose to
do so at random, the only information we get is that door 1 doesn’t contain the prize. All other
doors (2 through d− 1) are equally likely to contain the prize, and that probability is now greater
than 1/d so we should switch to any of them.

• He may open door with a number greater than 2. This means that the door had to be chosen at
random, and again we know nothing about the other doors. Thus, again the optimal strategy is to
switch to any other door.
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• He may open door number 2. This is the interesting part, because it may be one of two distinct
cases: either he chose it at random, or he is tired and he was forced to choose it because door 1
contains the prize. If the second case has a nonzero probability, it skews the probability in favor of
door 1. Hence, the optimal strategy in this case is to switch to door 1.

We may therefore summarize one optimal strategy as follows: Start by choosing door d. Once
Monty opens some other door, switch to the unopened door with the smallest number.

And from this summary we can easily compute our win probability: we win if either the prize is in
door 1 (probability 1/d) or if the prize is in door 2 and Monty opens door 1 (probability 1 if he is tired
and 1/(d− 2) if he is not).

Thus, the final answer is
1

d
+
p

d
+

1− p
d(d− 2)
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