IPSC 2014 PRACTICE June 14-15, 2014

Problem S: Say it loudly!

Alice was walking down the street. When she saw Bob on the other side, she shouted: “HELLO, BOB!”

“Hi, Alice!” responded Bob from afar and they both hurried to meet in the middle of the street.

“Bob! Why didn’t you shout back when I said hello?” asked Alice, apparently a bit annoyed.

Bob, surprised, defended himself: “What? But I did. I said ’Hi, Alice!’”.

Alice smiled. “Oh, I see. You were too quiet. To shout, you must speak in uppercase!”

“Ah, OK. No, wait. I said ’Hi’, which has an uppercase letter, see?”

“That makes no difference. The whole word must be in uppercase, LIKE THIS. Words that
are entirely in uppercase are twice as loud as normal words.”

“Your shouting is only twice as loud as normal?” laughed Bob. “That’s not very much.”

“Just you wait!” responded Alice and produced a terrible high-pitched squeal: “*Eceeeeeee!*”

“How did you do that?”

“You just have to add asterisks. All words between them are three times louder.”

“Cool. Let’s see who can shout louder!” proposed Bob and screamed: “*AAA aaa* a a aargh!”

Alice countered: “xaaaaa*!”

“I won!” exclaimed Bob. “I used three normal words, one word that was thrice as loud,
and one that was six times as loud. You could say I scored 1+1+1+3+6=12 loudness points.”

“No, you’ve got it all wrong. You have to count the average, not the sum. So you only
scored 2.4 points. And I scored 3, so I won!” concluded Alice.

You are given several sentences. Your task is to find the loudest one.

Input and output specification

The first line of the input file contains an integer ¢ specifying the number of test cases. Each test case
is preceded by a blank line.

The first line of each test case contains an integer n (1 < n < 100), the number of sentences. Each of
the following n lines contains one sentence. Each line is at most 500 characters long.

A word is a maximal non-empty sequence of consecutive upper- and lowercase letters of the English
alphabet. Words in a sentence are separated by spaces (), punctuation (,.:;’"!?-) and asterisks (*).
No other characters appear in the input. Each sentence contains at least one word. There is an even
number of asterisks in each sentence. The input file for the easy subproblem S1 contains no asterisks.

For each test case, output one line with a single integer — the index of the loudest sentence (i.e., the
one whose average word loudness is the highest), counting from 1. If there are multiple sentences tied for
being the loudest, output the smallest of their indices.

Example
input output

2
HELLO, BOB!
Hi, Alice!

4

*AAA aaax a a aargh!

*aaaaax

*note*that asterisks do not*nest**x*

* x THIS IS NOT BETWEEN ASTERISKS * *

http://ipsc.ksp.sk/ page 1 of 4 licensed under CC BY-SA 3.0

fuss

IPSC 2014 PRACTICE June 14-15, 2014

Problem T: Two covers

In a typical genome assembly problem, we are given set of small strings called pieces and our task
is to find their superstring with some reasonable properties. In this problem, you are given one such
superstring and a collection of pieces aligned to that superstring. Your task is to evaluate one particular

property.

Problem specification

You are given the length of the superstring ¢, a list of n pieces, and a number k. The positions in the
superstring are numbered from 1 to £. For each piece ¢ you are given the positions (b;, e;) of its beginning
and end.

The letter at position x in the superstring is well-covered if:

e There is a piece (b;, e;) such that b; <z —k and z < ¢;.
e There is a different piece (b;,e;) such that b; <z and x + k < e;.

Your task is to count the number of letters which are not well-covered.

Input specification

The first line of the input file contains an integer ¢ specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case starts with a line containing three integers: ¢, n, and k. Each of the following n lines
contains two integers b; and ¢; (1 < b; < e; < £): the indices of the endpoints of a piece. The pairs (b;, e;)
are all distinct.

In the easy subproblem T1 you may assume that ¢ < 20, ¢ < 10000, n < 1000, and 1 < k < /.

In the hard subproblem T2 you may assume that t < 10, £ < 107, n < 1000000, and 1 < k < £.

Output specification

For each test case, output a single line with a single integer — the number of letters that are not
well-covered.
Example

input output

S w =
Q0 O W

The well-covered letters are at positions 3, 4, and 5. Note that the letter at position 6 is not well-
covered.

http://ipsc.ksp.sk/ page 2 of 4 licensed under CC BY-SA 3.0

fuss

IPSC 2014 PRACTICE June 14-15, 2014

Problem U: Urban planning

The town of Pezinok wants to expand by building a new neighborhood. They hired some famous
architects to design it, and your friend Jano is one of them. He is in charge of the road network. It
is common to make one-way roads these days, so Jano went all out and decided to make all the roads
one-way. (Of course, a pair of junctions can be connected by two roads — one in each direction.)

Once Jano made a map showing the planned roads, he noticed that some parts of the neighborhood
might not be reachable from other parts. To estimate the impact of this issue, he decided to use a
systematic approach: he took a piece of paper and wrote everything down. Namely, for each junction j
he listed all other junctions that are (directly or indirectly) reachable from j. We call this information
the reachability list of a road network.

But then Jano’s hard drive crashed and he lost all the plans he had made. The only thing he has left
is the piece of paper with the reachability list.

Help Jano reconstruct his original road network. Of course, many different road networks can produce
the same reachability list. Therefore, Jano asked you to find the smallest possible road network that has
the given reachability list. That should help him reconstruct his original plans.

Problem specification

Find a road network with the smallest possible number of roads that has the given reachability list.

Input specification

The first line of the input file contains an integer ¢ specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case starts with a line containing an integer n, denoting the number of junctions. The
junctions are numbered 1 through n. Next, n lines follow, each containing a string of length n. The i-th
of these lines specifies which junctions are reachable from junction i. Namely, the j-th character in the
line is 1 if junction j is reachable from ¢ and 0 otherwise. (Note that for each ¢, junction 7 is reachable
from itself.)

The reachability list is consistent — it describes at least one real road network.

In the easy subproblem U1l you may further assume that the reachability list is special: for every
pair of junctions a # b, either a is reachable from b or b is reachable from a, but never both.

Output specification

For each test case, output the smallest road network that corresponds to the given reachability list.
The first line of the description should contain the number of roads m (which has to be as small as
possible). Each of the next m lines should contain two integers a; and b; (1 < a;,b; < n) such that there
is a one-way road going from junction a; to junction b;.

You can print the roads in any order. If there are multiple optimal solutions, output any of them.

http://ipsc.ksp.sk/ page 3 of 4 licensed under CC BY-SA 3.0

IPSC 2014 PRACTICE June 14-15, 2014

Example
input output

2 2
12

3 23

111

011 5

001 12
21

4 13

1111 34

1111 4 3

0011

0011

The first test case satisfies the additional constraint for the easy subproblem.

In the second test case, we know that all junctions should be interconnected, except that junctions 1
and 2 should not be reachable from junctions 8 and 4. The smallest road network with this property has
five one-way roads. One such road network is shown in the example output above. This test case also has
other optimal solutions.

http://ipsc.ksp.sk/ page 4 of 4 licensed under CC BY-SA 3.0

	Say it loudly!
	Two covers
	Urban planning

