author  wenzelm 
Wed, 13 Jul 2005 16:07:32 +0200  
changeset 16810  2406588f99cb 
parent 16445  bc90e58bb6ac 
child 16894  40f80823b451 
permissions  rwrr 
6134  1 
(* Title: Pure/General/graph.ML 
2 
ID: $Id$ 

15759  3 
Author: Markus Wenzel and Stefan Berghofer, TU Muenchen 
6134  4 

5 
Directed graphs. 

6 
*) 

7 

8 
signature GRAPH = 

9 
sig 

10 
type key 

11 
type 'a T 

9321  12 
exception UNDEF of key 
13 
exception DUP of key 

14 
exception DUPS of key list 

6134  15 
val empty: 'a T 
6659  16 
val keys: 'a T > key list 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

17 
val dest: 'a T > (key * key list) list 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

18 
val minimals: 'a T > key list 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

19 
val maximals: 'a T > key list 
6142  20 
val map_nodes: ('a > 'b) > 'a T > 'b T 
15759  21 
val get_node: 'a T > key > 'a (*exception UNDEF*) 
6142  22 
val map_node: key > ('a > 'a) > 'a T > 'a T 
23 
val imm_preds: 'a T > key > key list 

24 
val imm_succs: 'a T > key > key list 

6134  25 
val all_preds: 'a T > key list > key list 
26 
val all_succs: 'a T > key list > key list 

14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

27 
val strong_conn: 'a T > key list list 
6134  28 
val find_paths: 'a T > key * key > key list list 
15759  29 
val new_node: key * 'a > 'a T > 'a T (*exception DUP*) 
30 
val del_nodes: key list > 'a T > 'a T (*exception UNDEF*) 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

31 
val is_edge: 'a T > key * key > bool 
6134  32 
val add_edge: key * key > 'a T > 'a T 
6152  33 
val del_edge: key * key > 'a T > 'a T 
15759  34 
val merge: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception DUPS*) 
6142  35 
exception CYCLES of key list list 
15759  36 
val add_edge_acyclic: key * key > 'a T > 'a T (*exception CYCLES*) 
37 
val add_deps_acyclic: key * key list > 'a T > 'a T (*exception CYCLES*) 

38 
val merge_acyclic: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception CYCLES*) 

39 
val add_edge_trans_acyclic: key * key > 'a T > 'a T (*exception CYCLES*) 

40 
val merge_trans_acyclic: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception CYCLES*) 

6134  41 
end; 
42 

43 
functor GraphFun(Key: KEY): GRAPH = 

44 
struct 

45 

46 
(* keys *) 

47 

48 
type key = Key.key; 

49 

50 
val eq_key = equal EQUAL o Key.ord; 

51 

52 
infix mem_key; 

53 
val op mem_key = gen_mem eq_key; 

54 

15759  55 
val remove_key = remove eq_key; 
6152  56 

6134  57 

58 
(* tables and sets of keys *) 

59 

60 
structure Table = TableFun(Key); 

61 
type keys = unit Table.table; 

62 

6142  63 
val empty_keys = Table.empty: keys; 
64 

6134  65 
infix mem_keys; 
16003
48ae07a95c70
removed update_node, which is just an instance of map_node;
wenzelm
parents:
15927
diff
changeset

66 
fun x mem_keys tab = is_some (Table.lookup (tab: keys, x)); 
6134  67 

68 
infix ins_keys; 

15759  69 
fun x ins_keys tab = Table.insert (K true) (x, ()) (tab: keys); 
6134  70 

71 

6142  72 
(* graphs *) 
6134  73 

74 
datatype 'a T = Graph of ('a * (key list * key list)) Table.table; 

75 

9321  76 
exception UNDEF of key; 
77 
exception DUP = Table.DUP; 

78 
exception DUPS = Table.DUPS; 

6134  79 

80 
val empty = Graph Table.empty; 

6659  81 
fun keys (Graph tab) = Table.keys tab; 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

82 
fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, succs)) (Table.dest tab); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

83 

16445  84 
fun minimals (Graph tab) = Table.fold (fn (m, (_, ([], _))) => cons m  _ => I) tab []; 
85 
fun maximals (Graph tab) = Table.fold (fn (m, (_, (_, []))) => cons m  _ => I) tab []; 

6134  86 

6142  87 
fun get_entry (Graph tab) x = 
6134  88 
(case Table.lookup (tab, x) of 
15531  89 
SOME entry => entry 
90 
 NONE => raise UNDEF x); 

6134  91 

6142  92 
fun map_entry x f (G as Graph tab) = Graph (Table.update ((x, f (get_entry G x)), tab)); 
6134  93 

94 

6142  95 
(* nodes *) 
96 

97 
fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab); 

6134  98 

6142  99 
fun get_node G = #1 o get_entry G; 
100 
fun map_node x f = map_entry x (fn (i, ps) => (f i, ps)); 

101 

102 

103 
(* reachability *) 

104 

6659  105 
(*nodes reachable from xs  topologically sorted for acyclic graphs*) 
6142  106 
fun reachable next xs = 
6134  107 
let 
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

108 
fun reach ((R, rs), x) = 
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

109 
if x mem_keys R then (R, rs) 
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

110 
else apsnd (cons x) (reachs ((x ins_keys R, rs), next x)) 
15570  111 
and reachs R_xs = Library.foldl reach R_xs; 
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

112 
in foldl_map (reach o apfst (rpair [])) (empty_keys, xs) end; 
6134  113 

6142  114 
(*immediate*) 
115 
fun imm_preds G = #1 o #2 o get_entry G; 

116 
fun imm_succs G = #2 o #2 o get_entry G; 

6134  117 

6142  118 
(*transitive*) 
15570  119 
fun all_preds G = List.concat o snd o reachable (imm_preds G); 
120 
fun all_succs G = List.concat o snd o reachable (imm_succs G); 

14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

121 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

122 
(*strongly connected components; see: David King and John Launchbury, 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

123 
"Structuring Depth First Search Algorithms in Haskell"*) 
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

124 
fun strong_conn G = filter_out null (snd (reachable (imm_preds G) 
15570  125 
(List.concat (rev (snd (reachable (imm_succs G) (keys G))))))); 
6134  126 

127 

6142  128 
(* paths *) 
6134  129 

130 
fun find_paths G (x, y) = 

131 
let 

14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

132 
val (X, _) = reachable (imm_succs G) [x]; 
6134  133 
fun paths ps p = 
12451  134 
if not (null ps) andalso eq_key (p, x) then [p :: ps] 
135 
else if p mem_keys X andalso not (p mem_key ps) 

15570  136 
then List.concat (map (paths (p :: ps)) (imm_preds G p)) 
12451  137 
else []; 
138 
in paths [] y end; 

6134  139 

140 

9321  141 
(* nodes *) 
6134  142 

6152  143 
fun new_node (x, info) (Graph tab) = 
9321  144 
Graph (Table.update_new ((x, (info, ([], []))), tab)); 
6134  145 

6659  146 
fun del_nodes xs (Graph tab) = 
15759  147 
Graph (tab 
148 
> fold Table.delete xs 

149 
> Table.map (fn (i, (preds, succs)) => 

150 
(i, (fold remove_key xs preds, fold remove_key xs succs)))); 

6659  151 

6152  152 

9321  153 
(* edges *) 
154 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

155 
fun is_edge G (x, y) = y mem_key imm_succs G x handle UNDEF _ => false; 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

156 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

157 
fun add_edge (x, y) G = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

158 
if is_edge G (x, y) then G 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

159 
else 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

160 
G > map_entry y (fn (i, (preds, succs)) => (i, (x :: preds, succs))) 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

161 
> map_entry x (fn (i, (preds, succs)) => (i, (preds, y :: succs))); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

162 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

163 
fun del_edge (x, y) G = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

164 
if is_edge G (x, y) then 
15759  165 
G > map_entry y (fn (i, (preds, succs)) => (i, (remove_key x preds, succs))) 
166 
> map_entry x (fn (i, (preds, succs)) => (i, (preds, remove_key y succs))) 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

167 
else G; 
9321  168 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

169 
fun diff_edges G1 G2 = 
15570  170 
List.concat (dest G1 > map (fn (x, ys) => ys > List.mapPartial (fn y => 
15531  171 
if is_edge G2 (x, y) then NONE else SOME (x, y)))); 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

172 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

173 
fun edges G = diff_edges G empty; 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

174 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

175 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

176 
(* merge *) 
6152  177 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

178 
fun gen_merge add eq (Graph tab1, G2 as Graph tab2) = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

179 
let 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

180 
fun eq_node ((i1, _), (i2, _)) = eq (i1, i2); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

181 
fun no_edges (i, _) = (i, ([], [])); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

182 
in fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map no_edges tab2))) end; 
6152  183 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

184 
fun merge eq GG = gen_merge add_edge eq GG; 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

185 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

186 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

187 
(* maintain acyclic graphs *) 
6142  188 

189 
exception CYCLES of key list list; 

6134  190 

191 
fun add_edge_acyclic (x, y) G = 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

192 
if is_edge G (x, y) then G 
9347  193 
else 
194 
(case find_paths G (y, x) of 

195 
[] => add_edge (x, y) G 

196 
 cycles => raise CYCLES (map (cons x) cycles)); 

6134  197 

15759  198 
fun add_deps_acyclic (y, xs) = fold (fn x => add_edge_acyclic (x, y)) xs; 
9321  199 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

200 
fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG; 
9321  201 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

202 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

203 
(* maintain transitive acyclic graphs *) 
9321  204 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

205 
fun add_edge_trans_acyclic (x, y) G = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

206 
add_edge_acyclic (x, y) G > 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

207 
fold add_edge (Library.product (all_preds G [x]) (all_succs G [y])); 
9321  208 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

209 
fun merge_trans_acyclic eq (G1, G2) = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

210 
merge_acyclic eq (G1, G2) > 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

211 
fold add_edge_trans_acyclic (diff_edges G1 G2 @ diff_edges G2 G1); 
6134  212 

213 
end; 

214 

215 

216 
(*graphs indexed by strings*) 

16810  217 
structure Graph = GraphFun(type key = string val ord = fast_string_ord); 